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Summary

Experience-driven neuronal plasticity allows the brain to

adapt its functional connectivity to recent sensory input.
Here we use binocular rivalry [1], an experimental paradigm

in which conflicting images are presented to the individual
eyes, to demonstrate plasticity in the neuronal mechanisms

that convert visual information from two separated retinas
into single perceptual experiences. Perception during binoc-

ular rivalry tended to initially consist of alternations between
exclusive representations of monocularly defined images,

but upon prolonged exposure, mixture percepts became

more prevalent. The completeness of suppression, reflected
in the incidence of mixture percepts, plausibly reflects the

strength of inhibition that likely plays a role in binocular
rivalry [2]. Recovery of exclusivity was possible but required

highly specific binocular stimulation. Documenting the pre-
requisites for these observed changes in perceptual exclu-

sivity, our experiments suggest experience-driven plasticity
at interocular inhibitory synapses, driven by the correlated

activity (and also the lack thereof) of neurons representing
the conflicting stimuli. This form of plasticity is consistent

with a previously proposed but largely untested anti-Heb-
bian learning mechanism for inhibitory synapses in vision

[3, 4]. Our results implicate experience-driven plasticity as
one governing principle in the neuronal organization of

binocular vision.

Results

Perceptual advantages of binocular vision, including stere-
opsis and enhanced contrast sensitivity through binocular
summation, require integration of initially separatedmonocular
streams of information. Mechanisms responsible for binocular
integration are shaped by activity-dependent neural develop-
ment, both prenatally, when ocular dominance columns are
first established, and for several years postnatally, when bin-
ocular mechanisms are refined based on visual experience
*Correspondence: p.c.klink@uu.nl (P.C.K.), randolph.blake@vanderbilt.edu

(R.B.)
[5]. Whereas the neuronal components subserving binocular
integration may not change much after this critical period,
the computational mechanisms, likely reflected in synaptic
connectivity and efficacy, may be continuously recalibrated
in response to modified sensory experience. This ongoing
neuronal fine tuningmight in fact be the reasonwhy some stra-
bismus patients that have not adequately developed stere-
opsis during childhood can still acquire stereoscopic depth
vision later in life through extensive visual therapy (for anec-
dotal evidence, see [6]).
Exposure to binocular rivalry stimuli [1] creates a well-

controlled modified sensory context deviating from the
system’s standard in the sense that the brain receives incom-
patible, nonmatching inputs instead of matching ones. Under
such conditions, binocular integration fails and, instead,
observers tend to alternately perceive the monocular images.
This perceptual cycling is commonly believed to arise from
neural processes that include mutual inhibition between neu-
ronal representations of the two images [1, 7, 8]. During smaller
fractions of the time viewing rivalry, observers also transiently
perceive various mixtures of both monocular images [2, 9, 10],
the most common being transparent superimpositions of both
images and patchwork-like zones of local monocular domi-
nance termed ‘‘piecemeal’’ (Figure 1A). Mixtures suggest that
even during rivalry, periods of partial binocular integration
occur. The absolute predominance of different mixture per-
cepts depends on stimulus features including size [11], spatial
frequency [2, 9, 12], and global context [13], and the incidence
of these lapses in perceptual exclusivity plausibly depends on
the strength of mutual inhibition [2], a notion supported by
simulations with existing binocular rivalry models [14, 15]
(see Supplemental Results and Discussion and Figure S1
available online).
To test whether binocular integration is indeed a plastic

mechanism that adapts to sensory experience, we presented
the eyes with incompatible images for prolonged periods of
time, sometimes interspersed with nonrival stimuli, while
observers continuously reported whether they perceived
either one of the exclusive monocular images or a mixture.

Experiment 1: Perceptual Exclusivity andBinocular Rivalry
Observers viewed rival stimuli for prolonged durations while
tracking periods of exclusive dominance and mixed percepts
(Figure 1A). The same rival images were presented to each
eye throughout the experiment. If initial perceptual exclusivity
in binocular rivalry were due to the ‘‘unnatural’’ sensory con-
text of dissimilar images in the two eyes causing strongmutual
inhibition and preventing binocular integration, we would
expect exclusivity to progressively decrease while experience
with the modified sensory context accumulates. As expected
from earlier results [16], our observations confirmed this pre-
diction (Figure 1B), demonstrating a substantial decrease in
exclusivity over 35 min of rivalry (Figure 1B; Spearman rank
correlation, R = 20.46, p < 0.001). Data points represent aver-
aged data from 100 s rivalry trials, separated by 10 s rests.
The idea that the altered exclusivity in our experiment

reflects experience-driven plasticity yields a second, more
counterintuitive prediction: Exclusivity should not passively
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Figure 1. Dynamics of Perceptual Exclusivity

(A) Perceptual experiences during binocular rivalry. Exclusive percepts

correspond entirely to one eye’s stimulus. Mixed percepts resemble

patch-like (piecemeal) or transparent superimpositions of the stimuli.

(B) The average proportion of exclusivity for five observers, plotted against

time and normalized by individual baselines, determined in four rivalry trials

directly preceding the experiment. In the recovery stage, observers experi-

enced normal binocular vision (black circles), monocular vision only (white

squares), or no visual stimulation at all (gray asterisks).

(C) The average epoch durations for mixed (left panel, black circles) and

exclusive ‘‘left’’ and ‘‘right’’ percepts (right panel, white and black squares,

respectively) of the both-eyes-stimulated condition.

Dashed lines represent baseline levels. Error bars represent standard error

of the mean (SEM).
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recover to baseline after having dropped during rivalry but
should instead require correspondence of visual signals from
both eyes. In the second part of our experiment, immediately
following the first, recovery of exclusivity was investigated
with periods of exposure to various conditions of monocular
or binocular stimulation. In one condition, observers walked
around the laboratory with both eyes open. The matching,
natural visual input to both eyes should cause a recalibration
of the binocular mechanisms and restrengthen the inhibition
putatively weakened during rivalry. Because restrengthening
should be evidenced by increased perceptual exclusivity, the
periods of free viewing were interspersed with brief rivalry
trials. In a second condition, free viewing was replaced by
episodes without visual stimulation that should leave exclu-
sivity unaltered. A third condition contained periods of monoc-
ular stimulation where one eye was patched during free
viewing.
Significant increases in the proportion of exclusive domi-

nance indeed occurred when two eyes received matched
stimulation during free viewing (Figure 1B, black circles;
Spearman rank correlation, R = 0.75, p < 0.001), both because
mixed-percept epochs became briefer and because exclu-
sive percepts became longer (Figure 1C; Spearman rank
correlation, Rmix = 20.68, pmix < 0.001; Rexcl = 0.45, pexcl <
0.01). Consistent with our prediction, no such recovery was
observed throughout 48 min without visual stimulation (Fig-
ure 1B, gray asterisks; Spearman rank correlation, Rno stim =
20.01, pno stim = 0.97). Recovery was also entirely absent
in the third, monocular stimulation condition (Figure 1B,
white squares; Spearman rank correlation, Rpatched = 20.08,
ppatched = 0.61), implying that binocular correspondence is
essential for recalibration.
To further examine the failure of recovery with monocular

stimulation, the first two authors subjected themselves to an
extended period of continuous eye-patch wearing for 24 hr.
Remarkably, decreased exclusivity levels barely recovered
during this day of patching, yet recovery began immediately
after both eyes received matched stimulation during free
viewing (Supplemental Results and Discussion; Figure S2).
The longevity of decreased exclusivity in the absence of binoc-
ular input is reminiscent of the enduring time course of contin-
gent adaptation effects (e.g., [17]) and perhaps storage of
noncontingent aftereffects [18–20]. The slow decay of adapta-
tion in all of these cases could have a common cause: neurons
encoding a specific adapting stimulus may retain their adap-
ted state so as long as they are shielded from novel sensory
experience, thereby precluding recalibration [17, 18, 20].
The results of these first experiments support experience-

driven plasticity in the connectivity between neuronal repre-
sentations involved in binocular rivalry by implying both the
weakening and restrengthening of inhibition in the anticipated
conditions. Although the necessity of binocular stimulation is
clear, several remaining questions regarding the exact prereq-
uisites for the observed changes in exclusivity prompted the
following experiments.

Experiment 2: Decrease of Perceptual Exclusivity
To establish the prerequisites of decreasing exclusivity, we
performed two variations of our first experiment in which we
temporarily inverted the stimulus-eye configuration on every
fifth trial (‘‘opposite-configuration trials’’) so that the same
monocular stimuli were presented to the opposite eyes.
Although this manipulation leaves the global competition
between binocular stimulus representations unaffected, it
does activate different monocular neurons on those specific
opposite-configuration trials. Figure 2A demonstrates the
results using the same stimuli as in experiment 1. The oppo-
site-configuration trials (white squares) had significantly
higher levels of exclusivity than their temporal neighbors (Fig-
ure 2A, gray bands; paired t test, p < 0.05). Additionally,
exclusivity decreased only for the eye-stimulus configura-
tion used in the majority of trials (Spearman rank correla-
tion, Rmajority = 20.48, pmajority < 0.001; Ropp config = 20.22,
popp config = 0.36).
Whereas superimposition mixture percepts may be readily

understood in terms of weak inhibitory gain, the occurrence
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Figure 2. Prerequisites for Decreasing Exclusivity

(A) The average proportion of exclusive grating percepts over time for five

observers. The eye-stimulus configuration was the same for most trials

(‘‘majority trials,’’ black circles) but was switched in some interleaved trials

(‘‘opposite configuration trials,’’ white squares).

(B) Similar to (A), but here the monocular images were complex pictures of

a house and a face, not orthogonal sinusoidal gratings.

Dashed lines represent baseline exclusivity; *p < 0.05; error bars represent

SEM.
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of piecemeal mixtures more likely reflects weak inhibitory
spatial coherence or weak excitatory lateral connectivity
[13, 21]. We repeated the experiment using images of a house
and a face as rival targets to establish whether changes of
exclusivity also occur with more complex images for which
spatial coherence is particularly strong. Again, exclusivity
decreased for the major eye-stimulus configuration, but not
for the opposite-configuration trials (Figure 2B; Spearman
rank correlation, Rmajority =20.65, pmajority < 0.001; Ropp config =
20.15, popp config = 0.54). An additional control experiment
designed to disentangle the relative contributions of superim-
position and piecemeal percepts further suggested that
decreases in exclusivity were predominantly caused by
increases in the incidence of superimposition (Supplemental
Results and Discussion; Figure S3).

The opposite-configuration results support the idea that
inhibitory connections involved in experience-driven plasticity
are at least partially interocular, promoting inhibition between
representations of rivaling images comprising eye-of-origin
information. If eye-of-origin information were not involved,
the stimuli in the majority of trials and the opposite-configura-
tion trials should be equivalent and yield equivalent results.
The eye specificity is consistent with current thinking about
binocular rivalry as a hierarchical process involving multiple
stages of visual processing [22, 23].
Experiment 3: Recovery of Perceptual Exclusivity

We next investigated the requirements for restrengthening of
inhibition more closely. When binocular free viewing in exper-
iment 1 caused recovery, both eyes received matching natu-
ralistic input containing a broad range of orientations and
spatial frequencies, presumably including those of our rivalry
targets. To investigate whether recovery merely requires bin-
ocular correspondence or requires specific binocular corre-
spondence of the rivaling stimulus features, we performed
experiments in which we replaced our rivalry gratings with
a high-contrast plaid stimulus on every fifth trial. ‘‘Matching’’
plaids with the same spatial frequency and orientations as
the rivaling gratings (Figure 3A) were presented to both eyes
simultaneously (Figure 3B, black circles) or one eye at
a time, alternating between eyes every few seconds (Figure 3B,
gray asterisks). Plaids with different spatial frequency and
orientations (Figure 3A) were also presented to both eyes
simultaneously (Figure 3B, white squares). Figure 3C com-
pares the exclusivity levels between trials directly preceding
and following plaid presentations. Only binocularly presented
matching plaids evoked a significant recovery of exclusivity
(paired t tests, pbinocular match < 0.001; pmonocular match = 0.10;
pbinocular no match = 0.35), supporting the hypothesis that
restrengthening of inhibition only occurs during coinciding
activity of eye-specific orientation- and spatial-frequency-
tuned neurons. This also argues against an alternative hypoth-
esis of reduced exclusivity through contrast adaptation.
In principle, such adaptation might reduce exclusivity by
lowering the activity of suppressing neurons. However, during
presentation of matching plaid stimuli, when the same stim-
ulus features are present as during rivalry, contrast adaptation
should continue, causing exclusivity to further reduce, not
recover like we observed.
Experiment 4: Replay Rivalry

Our results suggest that prolonged binocular rivalry weakens
interocular inhibition through recalibration of binocular inte-
gration mechanisms in response to cumulative experience
with nonfusible input. If such experience-driven binocular
plasticity is a generic property of visual perception, the choice
for rivalry stimuli should not be essential. Monocular, nonrival-
ing stimulation might also weaken inhibition if it activates
neurons corresponding to one eye without simultaneously
activating their counterparts belonging to the other eye. We
tested this prediction using the reported percept durations
of baseline rivalry trials to create ‘‘replay trials’’ in which
individual eyes were alternately presented with their corre-
sponding monocular images. This manipulation provides the
required activity patterns without evoking rivalry (Figure 4A).
Observers viewed three sets of twomonocular replay trials fol-
lowed by a single rivalry trial to measure exclusivity. The
decreasing exclusivity following replay trials depicted in
Figure 4B (t tests, p < 0.05) favors an interpretation in which
experience-driven plasticity is not restricted to rivalry but
serves as a generic principle of binocular vision.
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Figure 3. Prerequisites for Recovery of Decreased Exclusivity

(A) The plaid stimuli that were interleaved with rivalry trials. Matching

plaids had the same components as the rivaling gratings, whereas non-

matching plaids’ components had different spatial frequencies and

orientations.

(B) The average proportion of normalized exclusivity over time for five

observers. Rivalry trials were interleaved with plaid presentations

(gray bands). Matching plaids were presented simultaneously to both

eyes (black circles) or one eye (gray asterisks). Nonmatching plaids

were always presented to two eyes (white squares). The dashed line

represents baseline exclusivity.

(C) Exclusivity, compared between rivalry trials that directly preceded

(white bars) and followed (gray bars) plaid presentation.

*p < 0.05; error bars represent SEM.
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Discussion

Experience literally changes our view of the world. Neuronal
processes converting retinal images to conscious perception
constantly adapt to changing sensory contexts. Our results
here demonstrate that upon prolonged exposure to binocular
rivalry stimuli, the nature of the accompanying perceptual
experience progressively changes. Where observers initially
perceive mostly alternations between exclusive representa-
tions of monocular images, mixtures of the two images
become more prevalent over time [16]. Building upon the
idea that binocular rivalry involves inhibition between neuronal
populations representing competing images [1, 7, 8], we sug-
gest that the rise in predominance ofmixed percepts is caused
by weakening of inhibitory efficacy [2].
Anti-Hebbian Plasticity

A theoretical framework for inhibitory plasticity in vision has
been constructed around so-called ‘‘anti-Hebbian’’ inhibitory
synapses [3, 4]. Hebbian synapses are well known as a neu-
ronal principle for experience-driven plasticity. The basic
idea is that when a presynaptic excitatory neuron participates
in successfully activating a postsynaptic neuron, their synaptic
bond is strengthened and the correlation between their
response patterns increases. Whereas there is abundant bio-
logical evidence for Hebbian learning in synapses mediating
excitatory interactions [24, 25], the related principle for inhibi-
tory connections has received far less attention. Extending
Hebb’s postulate, Barlow and Földiák have proposed that
inhibitory interactions are similarly strengthened and weak-
ened by coinciding pre- and postsynaptic activity or a lack
thereof [3]. Because such a plasticity scheme decorrelates
pre- and postsynaptic activity, it is sometimes dubbed ‘‘anti-
Hebbian’’ [26] (a term also used for several other decorrelating
synaptic mechanisms [27]). Anti-Hebbian plasticity is inherent
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in several models of unsupervised neuronal learning (e.g.,
[26, 28]), and an indirect route via inhibitory interneurons
has been physiologically demonstrated in several species
and brain structures [29–32]. However, plasticity rules for
direct inhibitory synapses appear to be more variable
[25], and although such anti-Hebbian learning has been
suggested in the context of contingent visual aftereffects
[3, 4], pattern adaptation [33], and center-surround
suppression [34], direct behavioral evidence is sparse.
Our binocular rivalry results are consistent with anti-

Hebbian learning mechanisms for interocular inhibition in
binocular vision. Assuming that perceptual dominance of
one rival image indicates successful suppression of the

competing neuronal representation, dominance may entail
activity in presynaptic neurons representing the dominant
image without equivalent activity in the postsynaptic neurons
encoding the (suppressed) opposite image. These are exactly
the conditions for which anti-Hebbian weakening of inhibitory
efficacy was postulated, explaining why initially high percep-
tual exclusivity should progressively decrease with viewing
time. Furthermore, the anti-Hebbian principle predicts that
(re)strengthening of inhibition would require simultaneous
activation of the same neurons involved in rivalry. This can
arguably be achieved by presenting binocularly corresponding
stimuli with features to which those specific neurons are
tuned. Our experiments demonstrate both the predicted
drop in perceptual exclusivity and the expected dependence
of recovery on stimulus features.

Plasticity and Rivalry
Previously demonstrated changes in perceptual experience
with prolonged or repeated rivalry include short-term slowing
of perceptual switch rates during single binocular rivalry trials
[35, 36] and long-term speeding of switch rates when sessions
are repeated over many days [36]. Whereas short-term effects
were explained by contrast-adaptation buildup [35, 36], long-
term effects were attributed to plasticity in neuronal responses
and/or connectivity within multiple brain areas [36]. Because
none of the abovementioned studies included the dynamics
of mixture percepts in their binocular rivalry evaluation, it is
difficult to unify the changes in switch rate with our changes
of binocular integration. However, one emerging notion is
that the adult visual system may be more plastic than previ-
ously realized, and future studies of binocular rivalry need to
appreciate that exposure to rival stimuli may cause plastic
changes in the very neuronal mechanisms targeted for study.
The many similarities and differences in the dynamics of

binocular rivalry and other forms of perceptual rivalry [7, 22,
35, 37–39] have promoted the idea that different types of
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(A) Whereas during rivalry, both eyes are simultaneously stimulated with

conflicting images, replay rivalry consists of alternating monocular stimula-

tions with a temporal structure based on individual perceptual reports

during real rivalry.

(B) The average proportion of normalized exclusivity in three rivalry trials

that were each preceded by two replay trials (gray bands). The dashed

line represents baseline exclusivity; *p < 0.05; error bars represent SEM.
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rivalry, although perhaps resolved at different processing
stages, may share common computational components in
their rivalry-resolving mechanisms [7]. Because mutual inhibi-
tion is conceivably one of those components [7], it would be
interesting to know whether plasticity of inhibitory efficacy
also influences other forms of rivalry. The reduced exclusivity
observed in our study proved to be specific to eye-stimulus
configuration, locating the proposed plasticity mechanism at
a stage of binocular rivalry processing that includes eye-of-
origin information [22, 23]. Still, this does not entirely preclude
the possibility of inhibitory plasticity in other forms of rivalry or
at other processing levels. Furthermore, it implies that plastic
interocular inhibitionmay be a general mechanism of binocular
vision, raising the intriguing question of what might happen if
exposure to rival stimulation were prolonged for hours or
days, impractical though it might be to find out.
Conclusions
Our findings suggest experience-driven (anti-Hebbian) plas-
ticity as one governing principle in the neuronal organization
of binocular vision. It is tempting to envision this mechanism
as ameans for interocular gain control during binocular combi-
nation. It could balance monocular signals so that the per-
ceived contrast and surface lightness are not noticeably
different between binocular and monocular viewing [40]. On
this view, ourbinocular rivalry experiments reveal theoperation
of such an inhibitory mechanism and its dynamicmodification.
The experience-driven plasticity we have demonstrated may
provide important clues toward answering the longstanding
questionof howrivalry andstereopsis canemerge fromasingle
neuronal organization of binocular vision [40–44].
Experimental Procedures

Observers viewed stimuli through a mirror stereoscope in a quiet darkened

room. Rival stimuli were surrounded by an alignment ring to facilitate binoc-

ular fusion. Observers continuously reported perceptual experience by

pressing buttons on a keyboard. One of two buttons was held while

observers exclusively perceived the corresponding monocular stimulus.

Both buttons were released when mixtures were perceived. The basic

experimental paradigm consisted of a baseline determination followed by

two stages differing in the timing of stimulus presentation. During baseline

determination, individual observers’ levels of exclusivity were established

with stimulus presentations lasting 100 s, separated by 100 s rests during

which observers viewed the alignment frame only. During the first part of

the actual experiment, stimulus presentations also lasted 100 s, but rests

were reduced to 10 s. In experiment 1, a second experimental phase

comprised stimulus presentations of 60 s and rests of 300 s. These long

rests consisted of 240 s of predefined visual input (depending on the condi-

tion) and 60 s of uniform field adaptation during which observers viewed

a gray screen. For all rivalry trials, we calculated proportions of exclusivity

as the sum of all exclusive percept durations divided by the total trial

duration. These proportions were normalized by the average baseline

proportion of exclusivity for each observer. For more details, see Supple-

mental Experimental Procedures.

Supplemental Information

Supplemental Information includes Supplemental Results and Discussion,

Supplemental Experimental Procedures, and three figures and can be found

with this article online at doi:10.1016/j.cub.2010.06.057.
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