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Abstract

Catfish detect and identify invisible prey by sensing their ultra-weak electric fields with electroreceptors. Any neuron that
deals with small-amplitude input has to overcome sensitivity limitations arising from inherent threshold non-linearities in
spike-generation mechanisms. Many sensory cells solve this issue with stochastic resonance, in which a moderate amount of
intrinsic noise causes irregular spontaneous spiking activity with a probability that is modulated by the input signal. Here we
show that catfish electroreceptors have adopted a fundamentally different strategy. Using a reverse correlation technique in
which we take spike interval durations into account, we show that the electroreceptors generate a supra-threshold bias
current that results in quasi-periodically produced spikes. In this regime stimuli modulate the interval between successive
spikes rather than the instantaneous probability for a spike. This alternative for stochastic resonance combines threshold-
free sensitivity for weak stimuli with similar sensitivity for excitations and inhibitions based on single interspike intervals.
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Introduction

The generation of neural action potentials involves a

fundamental threshold nonlinearity that often interferes with

processing small-amplitude stimuli. Although in some cases

thresholds could help to suppress unwanted noise, they often

limit sensitivity in sensory systems by blocking sub-threshold

modulations of activity. Comparable problems are observed in

many fields of science and technology and great progress has

been made in understanding how systems with an inherent

threshold can be optimized to provide optimal differential

sensitivity. The solution adopted by a wide range of systems

consists of exploiting stochastic resonance, i.e., the addition of an

optimized amount of noise that induces a moderate, highly

irregular, spontaneous background activity. Stimulus-evoked

modulations of this spontaneous activity then provide threshold-

free detection [1,2,3]. Stochastic resonance theory explains that

noise is essential for linearization and actually helps rather than

hinders detection [4]. Most neurons in the central nervous system

operate as predicted by this theory [4,5]. Here we show that

electroreceptors of the passively electric Brown Bullhead catfish

(Ictalurus nebulosus) have adopted a radically different strategy: The

spike generation mechanism is set to produce high-rate quasi-

regular spiking which not only prevents the underlying nonlin-

earity from hindering small-signal processing but also implies that

stimuli do not modulate the probability of spike occurrence, but

primarily the duration of interspike intervals.

Catfish electroreceptors consist of 10–20 sensory cells in the

lumen of an ampul, converging onto one or two afferents with

excitatory synapses [6]. Catfish live in murky waters and use their

electroreceptors to detect electric fields generated by potential

prey. These electric fields are extremely weak [7] and steeply

decline in strength with increasing distance to the source.

Electroreceptor performance therefore directly limits the distance

over which prey can be detected, suggesting that they should be

optimally adapted to sensing, encoding and processing signals

relevant to this task. Whereas e.g. the electroreception ampullae of

Lorenzini in sharks operate in accordance with stochastic

resonance theory [8], the ampullary electroreceptors of Ictalurus

nebulosus employ a different type of behavior. They exhibit a high

spontaneous activity (about 50 spikes/s) that is far more regular

than the typical random Poisson process one would expect for

noise-driven spontaneous activity [9]. Furthermore, they show no

signs of the sub-threshold modulations encountered in ampullae of

Lorenzini [10].

The presence of highly regular spontaneous activity contradicts

stochastic resonance as a solution to overcome threshold

nonlinearities. At first sight, this might suggests that the spike-

generation nonlinearities could hamper linear processing of

realistically small signals, but this is contradicted by earlier

experiments that characterized the electroreceptor’s near linear

filter properties [11]. This raises the question of how electro-

receptors achieve their highly effective detection of prey by means

of weak electrical stimuli [12].
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To solve this problem we tested the hypothesis that the

electroreceptor’s spontaneous activity is not noise-driven, but

caused by a DC bias current [13] that repetitively and

deterministically drives the afferent neuron to threshold. We

introduce an analysis technique that allows us to distinguish such

quasi-periodic spiking from the typical behavior expected from

stochastic resonance theory. Our analysis is a crucially modified

version of a common reverse correlation technique that uses spike

triggered averaging to estimate filter properties. Spike triggered

averaging (STA) [14,15] recovers the average stimulus profile that

precedes a spike. Using Gaussian noise stimuli, STA reveals the

system’s transfer properties and it provides a good estimate of

sensory filter properties preceding spike generation for neurons

that operate in a stochastic resonance regime [16]. In such a

regime, each spike conveys a similar message and the presence and

timing of individual spikes encodes relevant information.

In the quasi-periodic spiking regime, on the other hand, spike

presence is determined by the spike generator itself rather than by

the input signals. Under these conditions, input signals act by

modulating the duration of interspike intervals. To characterize

signaling in this regime we calculate Spike Interval Triggered

Averages (SITAs), a reverse correlation technique that triggers on

pairs of spikes separated by specific intervals, rather than on single

spikes. For neurons operating in the stochastic resonance regime,

SITA curves for different interspike interval durations match the

classic spike triggered average. For neurons operating in the quasi-

periodic firing regime, we show that the SITA curves depend

heavily on spike interval. For very long and short interspike

intervals, the SITA curves become almost sign-inverted copies of

each other, suggesting that the message that a spike conveys varies

with the duration of the preceding interspike interval.

Numerous studies, starting with de de Ruyter van Steveninck

and Bialek [17], have shown that different spike patterns may be

correlated with different stimulus features (see also [18,19,20]).

Oswald et al. [19,20] for example revealed different feature

triggered averages in neurons operating in a spike-bursting regime.

Neiman and Russell [21,22] studied the effect of stochastic

oscillations on coding in paddlefish electroreceptors, and there is

ample evidence for functional consequences of nonrenewal spike

train statistics on neural coding [23,24]. For catfish electrorecep-

tors, using spike-interval triggered averages we find a pattern of

results that clearly differs from these and other effects described

previously. SITA analysis reveals major differences in spike

generation from that of a Poisson spike generator or of a neuron

operating in stochastic resonance mode. Using a simple leaky

integrate and fire (LIF) model [25,26,27,28,29] in combination

with linear filters, we show that this electroreceptor behavior can

be explained by an interaction between a linear pre-filter and a

dynamic spike generator operating in the quasi-periodic regime.

This straightforward model reproduces the measured SITA curves

accurately, while at the same time reproducing the near perfect

linear behavior for sinusoidal stimuli [11].

Results

Figure 1 illustrates how SITAs are constructed in a reverse

correlation experiment. We recorded spikes from electroreceptors

in response to Gaussian white noise stimulation (Fig. 1A) and

constructed STAs of the stimulus-shape preceding spikes (Fig. 1B)

as a function of interval duration. To this end, recorded spikes

were divided in five classes based on the duration of their

preceding interspike interval (Fig. 1C). Since the total number of

spikes was about 75,000 and we divided spikes in 5 equally sized

classes, each class consisted of approximately 15,000 spikes. SITA

analysis is a generalization of the standard STA (which is the

average of all SITA curves), and reveals to what extent stimulus

patterns correlate with interval durations, rather than spike

timings. Differences between SITA curves for different spike-

interval durations imply additional structure in the spike-

triggered ensemble that is not picked up by conventional STA

analysis.

Figure 1D shows group results of SITA analysis for 26

electroreceptors recorded in 20 catfish. It is immediately clear

that curves for different interval durations are very different. In

fact, curves for short and long spike-intervals are roughly of

opposite polarity. Excitations due to positive preceding stimuli

correspond to short intervals whereas inhibitions due to negative

stimuli correspond to long intervals. The fact that these effects are

of opposite sign means that they largely cancel out in the classic,

overall, STA (black curve). Confidence intervals and distributions

of peak latencies and peak amplitudes (Fig. 1E) confirm that the

results are highly consistent across recordings. Since the shape and

frequency content of the different SITA curves is highly similar

(Fig. 2), the observed differences between SITA curves cannot be

related to different stimulus frequencies. Instead, they reflect a

general effect across all frequencies: Model simulations will show

that the observed effects can be explained by a single linear filter in

combination with a spike generator operating in a quasi-periodic

regime. Figure 2 also shows the nonlinear behaviour of catfish

electroreceptors. For a linear system the STA reflects the system’s

impulse response, and its Fourier transform should reflect the

linear transfer properties as measured with sinusoids. The example

in Figure 2 shows that for catfish electroreceptors these two

measures may yield rather different estimates of the filter

properties.

The overall STA amplitude is, on average, a factor of 0.26

(60.05 SD) smaller than the SITA amplitude for the shortest

intervals. Because SITAs for long and short intervals are not only

polarity inverted but also slightly shifted in time (Fig. 1E, time to

peak plot) the shape and timing of the overall STA may differ

substantially from that of its separate SITA components. Peak

latency for the overall STA is, for example, on average 5.8 ms

shorter than that for the shortest interspike intervals (Fig. 1E in

red) and about 20 ms shorter than that for the longest interspike

interval (Fig. 1E in blue). Amplitude, timing and shape of the STA

are therefore to a large extent determined by opposite SITA

shapes for long and short interspike intervals.

Differences between the overall STA and the SITA curves are

even more evident if we compare the additional power (sum of

squared signals) in the SITA curves relative to the power in the

overall STA. For a SITA based on five classes the total mean

variance across the five classes, in a time window of 100 ms

preceding spikes, is about a factor of 10 larger than the total power

in 5 random subdivisions of the STA. For subdivisions into a larger

number of classes the difference grows asymptotically to a slightly

higher value (about a factor of 12 for 16 classes) because it allows

for more accurate estimates of the variation with interval duration.

The large additional power in SITAs relative to the STA clearly

supports the notion that the overall STA cancels out most of the

interval-related variance in the spike-triggered ensemble. A

description in terms of a single impulse response that matches

the overall STA therefore misses contributions from different

SITA components.

To illustrate how SITA analysis distinguishes spike generation

within the usual stochastic resonance regime from that within the

quasi-periodic firing regime, we adopted a simple Leaky-Integrate-

and-Fire (LIF) spike generation model [25,26,27,28,29] in

combination with a linear pre-filter (Fig. 3A, see Methods for

Quasi-Periodic Spiking in Catfish Electroreceptors
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details). The LIF spike generator is a simplification of the

Hodgkin-Huxley model [30] and incorporates only the mere

basics of spike generation dynamics. In the absence of external

stimulation the membrane potential exponentially recovers to a

resting level. Whenever the membrane potential crosses the

spiking-threshold an action potential is generated and the

membrane potential is reset to a fixed, low level. The model

operates in stimulus-driven (stochastic resonance) mode for resting

levels below spiking-threshold (Fig. 3C) and in quasi-periodic firing

mode for resting levels above the spiking-threshold (Fig. 3B). In the

quasi-periodic setting the model produces results very similar to

the electroreceptor measurements. In this regime, recovery of the

membrane potential after a reset is sufficient for repetitive firing,

which in turn causes the same clear reversals of SITAs that were

also evident in the experimentally obtained SITAs. Modulatory

effects of stimuli on quasi-periodic spike generation can thus

explain SITA reversals: positive stimuli accelerate spike generation

whereas negative stimuli (temporarily) postpone spike generation.

SITAs of opposite polarity for long and short intervals therefore

reflect one and the same linear pre-filter.

Figure 1. Spike interval triggered averaging (SITA). (A) The recording setup. Stimulation currents are applied locally through a stimulation
ring, while spikes from afferent are recorded from within the lumen of the electroreceptor. (B) Example of the reverse correlation technique. For each
recorded spike the stimulus shape is analyzed in a directly preceding time interval (-Dt). For each measurement about 75,000 spikes were grouped in
5 classes with equal numbers of spikes in each class, based on the cumulative distribution of interspike interval durations (intervals preceding spikes).
(C) Interspike interval distribution (bottom panel) and cumulative interspike interval distribution (top panel). Spike-triggered averages were
generated for each class separately. (D) Overview of spike interval triggered averages (SITAs) for 26 electroreceptors recorded in 20 catfish. Colors
indicate the different interval classes as shown in (C). Confidence intervals for each class represent 62*SEM. The overall STA is shown in black and the
moment of the trigger spike is represented by the dashed line at T = 0 ms. (E) Left hand panel: Distributions of peak amplitude values, normalized to
the amplitude for the shortest interval class. Right hand panel: distribution of peak latencies.
doi:10.1371/journal.pone.0032786.g001

Quasi-Periodic Spiking in Catfish Electroreceptors
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In the stimulus driven regime (Fig. 3C) the SITA-curve polarity

inversions are absent, and individual traces largely resemble the

classic STA. The higher noise levels in the simulated SITA curves

of this regime are a consequence of the generally lower spike rate.

We used the same linear filter properties, stimulus durations and

stimulus dynamics for simulations with the two regimes, which

naturally results in a larger number of spikes for quasi-periodic

spiking than for purely stimulus-driven spiking.

While electroreceptors illustrate the surprising consequences of

a quasi-periodic spike-generator, we also verified whether SITA

analysis correctly picks up the more standard stochastic resonance

type of spike-generation. To this end, we applied the technique to

recordings from cat retinal ganglion cells, known to operate in the

stimulus-driven regime [16,31]. The random pixel arrays used in

these studies were broadband in both the spatial and temporal

domain to provide accurate estimates of linear response properties

[16,31]. The example curves in Figure S1 show great similarity to

the model profiles in Figure 3C and lack the polarity inversions

characteristic observed for the quasi-periodically spiking electro-

receptors. Thus, in retinal ganglion cells each spike conveys the

same type of information about the driving input, irrespective of

spike-interval duration. In this case, the conventional STA

provides a good estimate of the neuronal filter properties that

precede spike generation [31,32].

The LIF model reproduces both types of spiking behavior,

depending on the threshold level relative to the resting level.

Extensive model simulations in which we varied linear filter

properties, thresholds, stimulus amplitudes and noise amplitudes

revealed that the behavior in Figure 3B can only be obtained for

deterministic, repetitively firing neurons with spiking-thresholds

below the resting level. The LIF model in the stochastic resonance

regime cannot reproduce this behavior. In the stochastic

resonance regime, spikes occur when excitations drive the

potential to threshold; inhibitions therefore remain invisible,

unless followed by an excitation. On average, SITAs will thus

show a short latency excitation, with a longer latency inhibition

that is more pronounced for longer intervals (dark blue curve in

3C). Only the model in the quasi-periodic regime can reproduce

the SITA results for electroreceptors. The interaction of linear pre-

filtering with the dynamics of such a deterministic spike generator

implies that stimuli primarily modulate the duration of interspike

intervals, whereas the instantaneous probability for a spike is

determined by spike generation dynamics rather than stimuli.

Conventional STAs cancel out the variations with spike interval

duration and are therefore blind to variations in the spike-

triggered ensemble due to quasi-periodic spiking.

Our Spike Interval Triggered Average is fundamentally

different from the Spike-Triggered Covariances (STCs) that are

commonly used to recover multiple response components that

might become superimposed or cancel out in the STA [14,33].

Both STAs and STCs are based on the timing of single spikes and

do not take interval durations explicitly into account. In contrast,

the variation we describe depends critically on these spike-

intervals. As a control, we also calculated STCs for our data, but

we did not observe relevant eigenvectors beside the first

eigenvector (the STA). This is in line with the main effect we

observe; a sign reversal, which is irrelevant in an analysis of

variance. While the Volterra kernel approach put forward by

Marmarelis and co-workers [34,35,36] is especially sensitive to

nonlinear summation of response contributions from different

stimulus components, it makes no reference to the effects of spike

history and interval duration either. Moreover these analyses

provide a black-box type approach for filtering plus spike

generation together without any reference to underlying mecha-

nisms. Here we show that our SITA analysis actually reveals how

spike generation interacts with linear pre-filtering to yield different

types of behaviour.

For fly H1-cells, which are sensory neurons involved in optic

flow perception, it has been shown that additional information can

be extracted from spike trains when more complex spike patterns

are taken into account [17,37]. The question therefore arises

whether additional information involving multiple spike-intervals

could still be hidden in the SITA curves for electroreceptors. To

examine the possibility of SITAs reflecting an even more complex

combination of multiple interval effects, we extended our analysis

to two consecutive interspike intervals. We subdivided each

interval class into another 5 subclasses according to the duration

of the secondary, preceding spike-interval. With this subdivision,

each separate curve is based on the combination of two spike

intervals and the question is whether these two contributions

simply add up linearly, independent of interval combination, or

whether they show interactions. The results (Figure 4) demonstrate

that the obtained patterns are nearly perfectly explained by linear

combination of SITAs for consecutive intervals. The thick lines

show SITAs for different combinations of interval durations, as

indicated by the insets: The top panel shows data for a short

interval preceded by different interval classes (color coded).

Horizontal lines in the insets represent the mean interval

Figure 2. Bode plots comparing reverse correlation data and
sinusoidal stimulation data for an example electroreceptor. (A)
Amplitudes, (B) Phases. Grey lines with symbols show experimental
measurements for sinusoidal stimulation. The other lines are based on
Fourier transforms of STA and SITA data (see legend). The inset in (A)
shows the example SITAs from the reverse correlation data that were
used for these Fourier transforms.
doi:10.1371/journal.pone.0032786.g002

Quasi-Periodic Spiking in Catfish Electroreceptors
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durations. Thin lines in the graph show predictions for linear

combinations of SITAs, constructed as the average of two SITAs,

with time shifts equal to the mean duration of the interval

preceding the trigger spike. The match might even further

improve if we would use actual spike intervals rather then mean

spike intervals for a class. The absence of interval-specific

interactions demonstrates that extending the analysis to more

than a single inter-spike interval yields no additional information.

This is in line with the complete reset that follows the generation of

a spike in our LIF model.

Based on the strong dynamic interactions between pre-filtering

and spike generation one would expect clearly nonlinear behavior

[38,39]. This is indeed what we found for reverse correlation

experiments. Different settings for stimulus amplitude greatly

affected the shape of the reverse correlation functions, with curves

becoming increasingly asymmetric for increasing stimulus ampli-

tudes (Figure 5). For low amplitude stimuli the timing of different

SITA components is quite similar, causing effective cancellation in

the overall STA. For increasing stimulus amplitude the time to

peak for the excitatory SITA (red curves in figure 5) becomes

smaller whereas the peak latency of the inhibitory component

consistently increases. Consequently, the relative amplitude of the

overall STA, for instance, grows by a factor of more than two.

Also, oscillations that are clearly present at high stimulus

amplitudes are virtually absent at low stimulus amplitudes. At

the highest stimulus amplitude the inhibitory curve for long

interspike intervals (dark blue) shows a strong excitatory

component at short latencies, which is absent for low stimulus

amplitudes. Model simulations, in which parameters were fitted to

a single stimulus amplitude (middle row) and held constant for

Figure 3. The Filter-LIF model. (A) Schematic diagram. The model consists of a linear band-pass filter (F(t)), taking the stimulus (S(t)) plus added
noise (N1(t)) as its input, followed by a standard LIF spike generation mechanism. The LIF spike generator performs a leaky integration of the filter
output plus a second noise source (N2(t)). This second noise source corresponds to a high frequency noise on the spike threshold. If the integrated
signal crosses the threshold level (h), a spike is generated and the integrator is reset to a value of 2100. (B) Model behavior for quasi-periodic spiking.
(C) The behavior in a regime where spike generation is strongly driven by noise and external input signals. The linear filter stages were the same for
both simulations, except for a gain factor. The top panels show examples of output signals from the linear filters. The second row displays the course
of the ‘membrane potential’, including reset and post-spike recovery. The two regimes differ in the setting for the threshold (blue line) relative to the
resting level (green line) and reset level (red line). For deterministic firing (B) the threshold is set well below the resting level, whereas for input-driven
firing (C) it is set above the resting level. The bottom row panels represent the SITAs, with interval classes corresponding to the colors in Fig. 1.
doi:10.1371/journal.pone.0032786.g003
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other amplitudes, correctly predicted this type of nonlinearity and

showed similar shifts in peak latency, oscillatory behavior and

variation in relative STA amplitude.

Quasi-periodic spiking combined with linear pre-filtering also

consolidates inherent nonlinearities due to spike generation with

nearly perfect linear behavior observed with sine wave stimuli

[11]. The frequency transfer properties that we measured with

sinusoids were highly similar to those reported by e.g. Bretschnei-

der et al [11]. Low frequency slopes roughly corresponded to a

half-order characteristic (mean slope 3.3460.63 db/octave, for a

frequency range of 0.5–3 Hz), low pass filtering was close to that of

a third order filter (214.7866.4 db/octave, frequency range 20–

40 Hz), and optimal frequencies were close to 10 Hz. Figure 6

shows that the model correctly reproduces the linearity for sine

wave responses. Here, we fitted the model to SITA curves from a

reverse correlation experiment (Figure 6A) and then simulated the

responses to sine wave stimuli without adjusting any model

parameters. The model (thin lines in Figure 6A) reproduces the

recorded SITA curves quite well. Figure 6B shows recorded

response amplitudes for sinusoidal stimuli that grow linearly with

stimulus amplitudes for all temporal frequencies. The dashed

horizontal lines show the corresponding mean spike rates, which

are independent of stimulus amplitude and frequency. Model

simulations (Fig. 6C) accurately reproduce this pattern of results.

Indeed, within the quasi-regular spiking regime, the strong

nonlinearity inherent in spike generation does not interfere with

the nearly perfect linear behavior for sinusoids.

Discussion

The combination of SITA analysis and model simulations

demonstrates that electroreceptor afferents generate action

potentials well outside the range of stochastic resonance. Their

quasi-periodic spike-generating mechanism leads to a very

different transformation of stimuli into spike trains. Specific

temporal stimulus patterns (shape and polarity) correspond to

different inter-spike interval durations, whereas the timing of

spikes primarily depends on spike generation dynamics. For

neurons operating in stochastic resonance mode, each single spike

is informative about the degree to which a stimulus matched the

filter-properties of the neuron [16,18]. This (classic) assumption is

only true for systems with Poisson type spike generation, for which

separate SITA curves match the overall STA. The direct relation

between inter-spike interval duration and stimulus statistics, as it is

shown in the different SITA curves for catfish electroreceptors,

generalizes this notion for quasi-periodic spike generation.

Our objective and approach in the current study is different

from recent decoding studies that employ, for instance, the GLM

framework with optimized post-spike feedback [31,32]. These

studies have been highly successful in reproducing and predicting

response properties of retinal ganglion cells, including the details of

spike patterns and complex neuronal network effects. Our

objective was different and two-fold: 1) to develop a simple

analysis technique that allows us to estimate the impact of spike

generation on Spike-Triggered Ensemble (STE) data, and 2) to

explain the observed complex response behavior with a simple,

though physiologically realistic, model. In the case of catfish

electroreceptors this provides a valuable new insight in their

functional architecture. In catfish electroreceptors the correlation

between spikes and preceding stimuli is to a large extent

determined by the interspike interval rather than just by the

timing of spikes. It reveals the quasi-periodic nature of spike

generation, which does not conform to a simple rate transforma-

tion. Applying SITA analysis thus reveals a major nonlinearity and

greatly helps in elucidating the mechanisms underlying electro-

receptor response properties.

It is often thought that strong interactions between linear input

filters and spike-generation dynamics hamper the extraction of

useful information from spike trains. However, rather than

presenting a nuisance that hinders the decoding of spike trains, a

quasi-periodic spike generator might actually offer several

important advantages to the animal. Firstly, in contrast to the

stochastic resonance mode it requires no additional noise to allow

Figure 4. Two-interval SITAs. Each panel shows a single class of
intervals subdivided according to the preceding interval. Interval
durations are indicated by the insets in each graph. The black
horizontal lines in the inset show the mean duration of the interval
immediately preceding the trigger spike (at t = 0). The colored lines
represent mean interval durations for the preceding intervals, with
colors corresponding to the different curves. Color codes are similar to
those in Figure 1. Thick lines correspond to measured data, thin lines to
predictions based on linear summation of separate and independent
SITAs for the two consecutive intervals. In calculating the linear sum of
the SITAs for the first of the two intervals we used a time shift equal to
the mean interval duration for the second interval (black horizontal line
in insets). Linear predictions and actual measurements are highly
similar, indicating that adding a second interval to the analysis provides
no information that was not already present in the single interval
analysis.
doi:10.1371/journal.pone.0032786.g004

Quasi-Periodic Spiking in Catfish Electroreceptors
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for threshold-free detection. Since intrinsic properties drive the

afferent to cross the threshold, noise levels can be minimized.

Secondly, because no excitations are required to reach threshold,

quasi-periodic spiking allows for a detection mechanism that is

equally efficient for excitations and inhibitions. Finally, it does not

require estimating spike occurrence probabilities. In contrast to a

standard rate code [40] it provides information at the shortest

possible time delay of a single interspike interval. As such, it

provides a continuous and instantaneous estimate of how much

the input signal resembles the shape and polarity of a specific

temporal stimulus pattern. It remains an open question, however,

to what extent and how such information is used in generating

representations at higher processing levels.

In the vestibular system, Sadeghi et al. [29] have studied

information transmission by regular and irregular afferents.

Despite lower gains, regular afferents transmitted more informa-

tion than irregular afferents. This may very well correspond to a

different neural code, comparable to what we demonstrate for

regularly firing electroreceptors. Information transmission in

regular vestibular afferents was found to be highly sensitive to

jittering the timing of spikes. At first thought, this may seem to

contradict the importance of spike interval duration over mere

spike timing, but jittering individual spikes of course also affects

spike interval durations, especially in regularly firing units. An

affect of jittering spike timings is therefore not incompatible with

spike interval coding as suggested by SITA analysis.

The LIF model includes both increments and decrements of the

current driving the afferent membrane potential to threshold.

Since there are no indications of inhibitory synapses [41] in catfish

electroreceptors, we must assume that the synapse is continuously

active. Positive stimuli then increase and negative stimuli decrease

the rate of neurotransmitter release. Model simulations, however,

show that these modulations are relatively small compared to the

currents that are responsible for recovery of the afferent

membrane potential after a reset. Tonic neurotransmitter release

is therefore unlikely the main driving force for spontaneous

Figure 5. Reverse correlation results at different stimulus amplitudes. Experimental data (left column) and model simulations (right
column). Model predictions were based on simulations with model parameters that were obtained by fitting the model to data from a standard
reverse correlation experiment (third row of data, amplitude of 1). Noise amplitudes were varied by a factor of two between successive rows. Model
simulations and actual measurements show very similar effects. At small stimulus amplitudes, SITAs for long and short intervals have similar shapes
and comparable latencies. At higher stimulus amplitudes, shapes and latencies for different interval classes change drastically. Typically, inhibitory
deflections become delayed relative to excitatory deflections and they may generate a short latency excitatory peak.
doi:10.1371/journal.pone.0032786.g005
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activity. Instead, spontaneous activity mainly results from intrinsic

dynamics of the spike generator. This would explain why

sensitivity and spontaneous activity are not directly related [12].

Our model suggests that intrinsic properties of the spike generator

account for spontaneous activity while synaptic activity modulates

the speed of recovery after a spike.

Our model analysis further reveals that for regularly firing

neurons the spike triggered average may not provide an accurate

estimate of receptor filter properties. SITA curves and their

resulting overall STA are significantly affected by spike generation

dynamics. Because the STA is the average of SITA components

that are polarity inverted and slightly shifted in time, STA shape

and latency do not reflect filter properties in a simple,

straightforward manner. Our analysis also reveals that neuronal

filter properties cannot be recovered by selecting only the long

interspike intervals [42]. In the quasi-periodic spike generation

regime this would result in extreme errors. Also in the noise driven

regime (see Figure S1) the selection of a subset of interspike

intervals may drastically alter estimates of filter properties. The

extensive SITA oscillations for long interspike intervals in

particular are not related to any filter properties (see model

simulations). Separating STAs into contributions from long and

short spike intervals reveals how, and to what extent, spike

generation mechanisms affect the spike-triggered response ensem-

ble. SITA analysis thus provides the additional information

required to separate filter kernels from spike generation dynamics.

For catfish electroreceptors the spike history effects are huge.

Similar effects probably play a significant role in spike-history

dependent variations of average current trajectories preceding

spikes in rat motoneurons [43]. Large effects, albeit of a very

different nature may also be observed for neurons operating in, for

example, a spike-bursting regime [19,20]. For other systems, as

illustrated here with cat retinal ganglion cells the implications of

spike generation may be less surprising. Data for cat retinal

ganglion cells (Figure S1) do not show the pronounced reversals

that we saw for electroreceptors, indicating that for these cells and

conditions, spike generation is primarily stimulus(/noise)-driven.

We simulated this type of behavior with a large input gain, and a

threshold above the equilibrium potential. It should be noted

though that for high input gains the exact threshold level becomes

quite irrelevant because, relatively speaking, stimulus-induced

fluctuations are much larger. In this regime the Filter-LIF model’s

behavior does not substantially differ from a Linear-Nonlinear

Poisson (LNP) model. This is in line with the high predictive value

of the latter type of model, or the GLM framework that includes

history dependence [31,32] and network effects for e.g. ganglion

Figure 6. Example of model fit to SITA data and predictions for sine wave stimuli. (A) Comparison of experimental data (thick lines) and
model fits (thin lines). (B) Experimental response amplitudes for sine wave stimuli of different amplitude (x-axis) and frequency (see legend). (C)
Predictions for the same experiment based on the model fitted to the reverse correlation data in (A). Dashed lines in panels (B) and (C) represent
mean spike rates, which are independent of stimulus frequency and amplitude; solid lines represent amplitudes of Post Stimulus Time Histograms
(PSTH). Both experimental data and model predictions increase linearly with stimulus amplitude, as long as amplitudes stay below the mean spike
rate. Higher amplitudes cause distortions due to clipping at zero spikes/s and compression at very high spike rates.
doi:10.1371/journal.pone.0032786.g006
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cells [31]. SITA analysis may however still be very useful for

identifying effects of spike generation. In combination with model

simulations it provides insight into the mechanisms that cause

variations in the STE. The SITA analysis therefore provides

additional information that cannot easily be recovered by e.g.

STC analysis [14,33,44] or nonlinear Volterra or Wiener kernel

analyses [34,35,36,45,46,47].

The SITA technique may elucidate operating modes in a wide

range of nonlinear dynamical systems. It provides a simple analysis

method to distinguish quasi-periodic transitions from stimulus-

and noise-driven transitions. Moreover, it reveals when and how

recent events play an important role in the generation of a future

event, a question central to many systems ranging from low level

sensors to high level mechanisms underlying e.g. binocular rivalry

[48,49].

Materials and Methods

Recordings
We recorded from ampullary electroreceptors in the skin of the

Brown Bullhead Catfish (Ictalurus nebulosus), a passively electric fish

that uses electroreceptors to sense electrical fields such as those

generated by potential prey [7]. The electroreceptors consist of a

group of sensory cells (10–20) in the lumen of an ampul, which

make excitatory synapses onto one or two afferents [6]. Spikes

from single afferents were recorded by placing the tip of a tungsten

microelectrode near the opening of an ampul. The electrorecep-

tors have a maintained discharge rate of approximately 50 spikes/s

and respond nearly linearly, and with band-pass characteristics, to

small-amplitude sinusoidal stimuli [11].

Anesthesia was induced by 4 mg/l Ethomidate, dissolved in

water, and maintained by half of this concentration in the

experimental setup. Ethomidate blocks central processing and

conveniently immobilizes the animal, without blocking responses

of the peripheral nervous system. Animals were artificially

respirated with a water flow of about 100 ml/min. Experiments

lasted up to 6 hours, after which the animals were transferred to a

recovery chamber where artificial respiration was maintained

during recovery. All experimental procedures and animal handling

were in line with University regulations and approved by the

University’s animal experiment review committee (Approval ID

2008.I.06.043, Dierexperimentencommissie Academisch Biome-

disch Centrum, Utrecht University). Recordings were obtained in

20 catfish, weighing 200–750 g. During the recordings, the fish

were held in a perspex tray in which rubber clamps gently pushed

their head up onto a nose-rest through which aerated water was

supplied. An adjustable overflow was used to control the water

level and return excess water to the aquarium. Experiments were

performed at a water temperature of 20 degrees Celsius. To avoid

spike-sorting problems we only selected electroreceptors with

single afferents for our recordings.

An Apple G4 computer with a National Instruments PCI 1200

data-acquisition board controlled the experiments. Custom-

written software (in C) was used to simultaneously generate

stimuli, record spikes and stimuli, provide online data analysis, and

store all information for further offline analysis. Spike-times were

obtained at a temporal resolution of 2,000 Hz.

Stimuli and Stimulus protocol
Stimuli consisted of low frequency (0.1–100 Hz) fluctuations of

electrical potential and were generated at a sample rate of

1,000 Hz. Computer-generated stimuli ranged in amplitude

between 25 and 5 Volts at 12 bits resolution and were reduced

to a suitable amplitude range at the site of the electroreceptor by

means of attenuating resistor circuits adjustable from 0 to 80 dB in

steps of 1 dB. A voltage-to-current converter was used to render

stimulation currents independent of resistance. Stimulation

currents passed through a 1 cm2 area of skin surface, located at

the dorsal head region. They were applied by means of a circular

stimulation electrode, placed about 1.5 mm above the skin and

surrounded by an insulating rubber ring that prevented leakage of

stimulation current directly to ground (surrounding medium). The

rubber ring prevents any direct contact of the stimulation

electrode with the skin, mimicking natural stimulation as good

as possible. To assure perfect correspondence of stimulus and

response timings, computer generated stimuli were re-recorded by

feeding output signals back into the AD converter.

Once a stable recording of sufficient signal-to-noise ratio was

obtained, we first adjusted the attenuator box to a level where full-

range sinusoidal modulation produced a response amplitude

roughly equal to the mean firing rate of the cell (about 50

spikes/s). Within this range response amplitudes vary linearly with

stimulus amplitude. No attempt was made to calibrate the absolute

strength of the stimulus for each electroreceptor and stimulus

strengths are therefore reported in arbitrary units (a.u.). For each

electroreceptor we measured frequency transfer properties with

sine wave stimuli, reverse correlation functions with white noise,

and, if time allowed, several additional experimental variations.

Frequency transfer properties with sinusoidal stimulus modula-

tions were measured in the range of 0.5 to 50 Hz, in 20 or 30

logarithmically spaced steps. Trials lasted 2 seconds and were

separated by 0.2 s inter-stimulus periods without stimulation. The

order of stimulus presentations was randomized within repetitions

and we typically recorded stimuli for a total duration of at least

30 s. In some of the experiments, we extended the frequency range

to 0.1–100 Hz and increased trial durations to 10 seconds.

Comparison of data obtained for single receptors in different

protocols showed no differences due to this increased frequency

range. In a subset of the recordings, we also measured frequency

transfer properties at a range of sinusoidal amplitudes.

In reverse correlation experiments the stimuli consisted of white

noise, generated at 1,000 Hz and passed though a single first order

low pass filter (in software) with a corner frequency of 50 Hz.

Filtering increased the power in the appropriate frequency range

and transformed white noise into Gaussian white noise. The

50 Hz high frequency limit for the noise stimulus roughly

corresponds to the high frequency limit for electroreceptor

responses. As a control, we measured reverse correlations at

different cut-off frequencies for the low pass stimulus filter. At cut-

off frequencies below 50 Hz, we observed significant changes in

reverse correlation functions. Data for 50 Hz were however

identical to those obtained for 100 Hz. White noise responses were

recorded in trials of 30 seconds. We typically used 10 different

seeds and repeated trials 5 times. This resulted in a total recording

time of 25 minutes, yielding roughly 75,000 spikes.

Data analysis
Mean spike rates, response amplitudes and phases for sinusoidal

stimulation were obtained by fitting a sinusoidal function to the

Post Stimulus Time Histogram (PSTH) at the frequency of

stimulation. For phase calculations we also fitted a sinusoid to the

recorded stimulus and subtracted the resulting phase shift (if any)

from the response phase shift. For analyzing the spike-triggered

ensemble, spikes were grouped in 5 classes containing equal

numbers of spikes, based on the cumulative inter-spike interval

distribution (Fig. 1c). Spike Triggered Averages (STAs) were then

calculated for each interval class separately, thus creating Spike

Interval Triggered Averages (SITAs). Obviously, the mean value
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of these individual SITAs is the conventional STA. We divided

spikes in 5 equally sized classes, each consisting of about 15,000

spikes. Our choice for five classes is rather arbitrary. As a control

we also calculated SITAs for larger numbers of classes. Increasing

the number of classes results in a higher resolution for the variation

with interval duration, but the main effects remain similar. Initial

data-analysis, including the construction of PSTHs and SITAs,

was done in C. Further analysis and comparisons of experimental

and modeling data was done in MATLAB (The MathWorks,

Natick, MA).

Modeling dynamic interactions
To show how the observed SITAs may arise from dynamic

interactions between linear filtering and a nonlinear dynamic spike

generator we combined these effects in a simple, quantitative

model (Fig. 2A). The model consists of a linear filter in

combination with a spike generator of the leaky-integrate and

fire (LIF) type, which is a common simplification of the Hodgkin-

Huxley model for excitable membranes [26,27,28]. In contrast to

a Poisson spike generator, a LIF model-neuron includes the

essential dynamics of spike generation that we wish to incorporate.

The dynamics of the membrane potential V(t) are expressed in

Equations 1 and 2 and include a membrane time constant t and a

spike generation threshold h.

t
dV (t)

dt
~{V (t)zI(t)zN2(t); V (t)vh ð1Þ

V (tzdt)~{100; V (t)§h ð2Þ

The N2(t) term describes a small uniform noise with a fixed

RMS amplitude (610). This noise source was introduced to obtain

realistically smooth firing-rate functions. The main drive term I(t)

is the filter output, defined formally as the convolution of the

sensor’s filter impulse response F(t) with mixture of the stimulus

S(t), with gain gS and a front-end Gaussian noise term N1(t), with

gain gN (Equation 3).

I(t)~F (t) � ½gsS(t)zgnN1(t)� ð3Þ

This noise term (N1) proved essential for reproducing proper

interval distributions for both spontaneous and input-driven

activity, as well as for scaling SITAs independent of the mean

firing rate and specific SITA shape.

We modeled the system’s band-pass filter properties with a

series of first order high-pass and low-pass filters, representing both

filtering in receptor cells and in the synapse onto the afferent axon.

The high frequency fall-off is modeled with three first-order low-

pass filters with the same corner frequency:

tL
dX1(t)

dt
~{X1(t)zgsS(t)zgNN1(t) ð4Þ

tL
dXi(t)

dt
~{Xi(t)zXi{1(t); i[f2,3g ð5Þ

The high-pass part, formally just a single ‘fractional-order’ stage

[11,50], can in our case be approximated by five in-parallel first-

order stages:

I(t)~
X5

i~1

h0:35(i{1) Yi(t) ð6Þ

dYi(t)

dt
~{

hi{1

tH

 !
Yi(t)z

dX3(t)

dt
; i[f 1 , , ,5 g ð7Þ

Finally, the model includes a time delay in the order of several

milliseconds that allows for frequency independent delays. These

include any delays between spike initiation and registration, e.g.

due to the use of a window discriminator and/or threshold

detection in the software.

Model simulations were run at 2,000 Hz, similar to the

resolution of experimentally recorded responses. For numerical

simulations, we used first order Euler integration with a time step

of 0.5 ms, which proved sufficiently accurate. Model simulations

were run using the same software, the same stimuli and the same

procedures as for the physiological experiments. Model data were

saved in the same format as the recorded data and analyzed using

the same analysis routines.

We used the nonlinear fit procedure STEPIT [51] to fit the

model to the data. The LIF spike generator had two free

parameters: the time constant t and the threshold level h. The

formal parameters in F(t) were all tied to just 3 free parameters: the

low-pass timescale, and two parameters that effectively determine

the high-pass timescale and spectral slope (see Equations 6 and 7).

The fit error was calculated as the sum of squared differences

between experimental and model SITAs for 5 different interval

classes, similar to the curves plotted in figure 1b. In addition, we

added a small error term based on the difference in mean spike

rates between model and experimental data. This assured that

both the mean spike rate and SITAs were fitted correctly. Initial

parameter values for the model fit were first estimated by trial-and-

error. Correct optimization was checked by restarting the fit-

procedure with different starting values. We did not analyze the

reliability or confidence intervals for estimated parameters,

because we were interested in the model’s dynamic behavior

rather than parameter quantification.

Supporting Information

Figure S1 SITAs for cat retinal ganglion cells. Responses

of ganglion cells were recorded in the optic tract of anesthetized

and paralyzed cats. Stimuli consisted of binary, dark-light pixel

arrays. The array measured 16616 pixels and fully covered the

cell’s receptive field. Each pixel was modulated between light and

dark levels in a unique random order. Stimuli were updated every

second frame on a 100 Hz CRT display in front of the cat.

Experimental and surgical procedures have been described in

detail in previous publications [52,53] and were in line with

national and international guidelines. Reverse correlations were

constructed for each pixel separately. Dark values were represent-

ed by a value of zero, light pixels by a value of 1 and correlograms

describe the mean value at different stimulus-spike intervals,

aligned with all spikes at time 0. The examples given correspond to

a single pixel in the center of the receptive field of 8 Off center cells

and 2 ON center cells. Apart from an inversion, due to the

excitation by light off for an Off center cell, the pattern of results

strongly resembles that seen in Fig. 3C. Notice that no attempt was

made to fit model parameters in Fig. 3C to actual data. In Fig. 3C

all parameter values were chosen equal to those in 3B, except for
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the spike threshold value and stimulus amplitude. It can be seen

that SITAs for cat retinal ganglion cells show behavior similar to

what is predicted by the stimulus-driven regime: a lack of

inversions at short stimulus-spike intervals, combined with large

oscillations for long inter-spike intervals. We refer to this regime as

the stimulus-driven regime, because spike timings are largely

determined by the filter output and to a lesser extent by the

dynamics of spike generation. The present findings mainly concern

the alternative, quasi-periodic regime, where spike generation is

the dominant factor.

(TIF)
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