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ABSTRACT

Objective: Recent strides in neurotechnology show potential to restore vision in individuals afflicted
with blindness due to early visual pathway damage. As neuroprostheses mature and become available
to a larger population, manual placement and evaluation of electrode designs becomes costly and
impractical. An automatic method to simulate and optimize the implantation process of electrode
arrays at large-scale is currently lacking.
Approach: Here, we present a comprehensive method to automatically optimize electrode placement
for visual prostheses, with the objective of matching predefined phosphene distributions. Our
approach makes use of retinotopic predictions combined with individual anatomy data to minimize
discrepancies between simulated and target phosphene patterns. While demonstrated with a 1000-
channel 3D electrode array in V1, our simulation pipeline is versatile, potentially accommodating
any electrode design and allowing for design evaluation.
Main results: Notably, our results show that individually optimized placements in 362 brain hemi-
spheres outperform average brain solutions, underscoring the significance of anatomical specificity.
We further show how virtual implantation of multiple individual brains highlights the challenges of
achieving full visual field coverage owing to single electrode constraints, which may be overcome
by introducing multiple arrays of electrodes. Including additional surgical considerations, such as
intracranial vasculature, in future iterations could refine the optimization process.
Significance: Our open-source software streamlines the refinement of surgical procedures and
facilitates simulation studies, offering a realistic exploration of electrode configuration possibilities.

Keywords neurotechnology · visual neuroprosthetics · intracortical electrodes · electrode placement · phosphene
mapping · retinotopy · primary visual cortex · population receptive field maps · magnetic resonance imaging · Bayesian
optimization · simulation software · large-scale prediction · open-source
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1 INTRODUCTION

Advances in neurotechnology are revolutionizing the restoration of lost sensory and motor functions, such as vision,
hearing, and movement, through direct brain recording and stimulation (Schalk et al., 2024, Hettick et al., 2022,
Sahasrabuddhe et al., 2020, Musk and Neuralink, 2019, Jung et al., 2024, Maynard, Nordhausen, & Normann,
1997).Among these developments, the restoration of a rudimentary form of vision in patients who have become
completely blind due to damage in their early visual pathways is particularly relevant (Brindley & Lewin, 1968; Dobelle
et al., 1974; Farnum & Pelled, 2020; Nowik et al., 2020; Roelfsema, 2020; Schmidt et al., 1996). The typical approach
is to replace a part of the visual pathway with a brain-computer-interface (or visual prosthetic implant) that translates a
camera feed into patterned electrical signals that are used to directly stimulate the brain (Normann et al., 2009). Such
stimulation of the early visual pathways (retina, optic nerve, thalamus, or visual cortex) elicits dot-like visual sensations
with fixed spatial locations known as phosphenes (Brindley & Lewin, 1968; Dobelle et al., 1976; Lee et al. 2000;
Maynard 2001; Schmidt et al., 1996). In intact visual systems, the spatial location of a phosphene corresponds to the
stimulated neuron’s receptive field, the location of the visual field where visual stimuli evoke a response. Receptive
fields are predictably organized to represent the visual world in a way that replicates the topography of the retina across
several brain areas (i.e., they have a retinotopic organization). This organization is comparable across individuals, but
some variability does exist (Benson et al., 2018, 2022). Patterns of phosphenes that together form shapes can be evoked
by stimulating several electrodes simultaneously (Chen et al., 2020; Dobelle et al., 1976) or in close temporal proximity
(Beauchamp et al., 2020; Bosking et al., 2022; Oswalt et al., 2021). This way, phosphene patterns that are created in
real-time, based on a (preprocessed) camera feed, will be able to help blind individuals recover some visual functions
that were lost or severely impaired after becoming blind (Fernández et al., 2021, Lozano et al., 2020).

The functional properties of artificial vision with different sets of phosphenes, corresponding to different prosthetic
devices, can be studied in seeing volunteers using phosphene simulations. To date, such studies have often assumed high
density, uniformly spaced, full field covering phosphene configurations (Avraham et al., 2021; Bollen et al., 2019; S.
Chen et al., 2009; Sanchez-Garcia et al., 2020; Steveninck et al., 2020; J. Wang et al., 2021), which is a highly unlikely
assumption given the anatomy and functional organization of the human brain. Current state-of-the-art prostheses
only cover a small portion of the visual field (Fernández et al., 2021; Niketeghad & Pouratian, 2019), which is often
a hardware limitation. With these limitations in mind, it is conceivable that different types of daily activities might
require different phosphene configurations. A multi-functional visual prosthesis thus requires a careful selection of
electrode designs and cortical location target. For example, a dense foveal coverage would be useful for reading, or
recognizing an object in front of you, while peripheral vision may be important for context awareness during navigation
(Ghezzi, 2023). Additionally, the number and distribution of stimulation electrodes covering visual space are important
determinants. More complex phosphene patterns will require a larger number of electrodes and larger patterns require
a broader coverage of visual space. Recent developments in image processing have produced deep learning-based
algorithms that allow the most relevant features of a scene to be selectively converted into efficient phosphene patterns
(Lozano et al., 2020 , Beyeler & Sanchez-Garcia, 2022, Van Der Grinten, de Ruyter van Steveninck, Lozano et al.,
2024). In theory, visual prostheses should allow crucial every-day life activities such as accurate emotion expression
recognition (Bollen et al., 2019), navigation (de Ruyter van Steveninck et al., 2022; Lu et al., 2014; Perez-Yus et al.,
2017; Vergnieux et al., 2017; L. Wang et al., 2008), object recognition (Li et al., 2018; Lu et al., 2014; Macé et al.,
2015; Sanchez-Garcia et al., 2018; Xia et al., 2015) and even motion detection (Chen et al., 2020; Perez-Yus et al.,
2017) to be reestablished after vision loss.

Recent advances in biologically plausible simulations of cortical stimulation-evoked phosphenes allow us to realistically
study the functional properties of visual cortex-based phosphene vision (Van Der Grinten, de Ruyter van Steveninck,
Lozano et al., 2024, Fine, I. and Boynton, G.M. 2024), and to simulate and optimize targeted implant visual coverage,
as we demonstrate in this work. An ideal phosphene coverage throughout the visual field would likely require many
stimulation sites in a brain structure that encodes the entire visual field. However, it remains unclear how phosphenes
evoked by stimulation of different hierarchical areas of the visual cortex perceptually combine (Schiller et al., 2011;
Schmidt et al., 1996). A major question for all neuroprosthetic approaches is where to interface with the brain. The
broad retinotopic organization of the visual brain puts forward many potential targets for implantation, each with
their own challenges (Fernández and Normann, 2016). Contemporary approaches therefore typically target a single
functional area. Candidate structures are the retina, lateral geniculate nucleus (LGN) and cortical areas V1 (Fernández
and Normann, 2016) to higher order regions like V2, V3, V4 and hMT.

Previously, Beyeler et al. (2019) demonstrated computational models of phosphene vision to optimize surgical placement
of retinal implants, estimating that up to ~55% of axonal activation could be avoided, improving the quality of the
modeled visual percepts. Bruce and Beyeler (2022) utilized dictionary learning alongside phosphene vision models to
enhance expected visual coverage and effective resolution for Argus II users, highlighting the crucial importance of
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optimization planning in implant design (Beyeler et al., 2017; Granley and Beyeler, 2021). Another candidate structure,
the LGN, represents the entire visual space in a relatively small volume of brain tissue, and phosphene perception in
non-human primates has been demonstrated by Pezaris and Reid (2007). However, given its location deep in the brain,
an LGN visual prosthesis would require long electrode shanks with a high number of densely placed electrodes at the
tip.

The primary visual cortex (V1) lies more superficial, making it an interesting candidate for a visual prosthesis. Electrical
microstimulation of an electrode located in V1 produces a phosphene percept which location closely matches the
Receptive Field (RF) of the affected neurons (Winawer, J. & Parvizi, J., 2016, Bradley, D. C. et al., Davis, T. S. et al.
2005, Chen et al., 2020). The functional organization of basic visual features such as columnar orientation selectivity
and color selectivity is well established in V1 and its position early in the visual processing hierarchy might allow
higher level areas in to process more complex visual features, such as motion (Salzman et al., 1990) or faces (Mundel et
al., 2003) in a relatively natural way. The feasibility of using large-scale V1 stimulation to generate phosphene-based
pattern vision was recently investigated in rhesus monkeys (Chen et al., 2020, 2023) with a 1,024-channel count cortical
prosthesis. Human cortex, however, has a lot more gyrification and substantial individual differences in the surface
area of visual cortices (Benson et al., 2021). The functional organization of early visual cortex is, however, relatively
predictable across individuals as long as the individual anatomy is known (Benson & Winawer, 2018; Rosenke et al.,
2021; L. Wang et al., 2015). The ability to derive function from anatomy is especially important in blind patients, as
conventional fMRI localizers based on visual input cannot be used. The functional organization of an individual’s brain,
together with the electrode design and placement, will ultimately determine what kind of phosphene maps a visual
prosthesis can generate.

At this moment, visual prosthetic developments are primarily focused on patients with late-onset blindness because 1)
these individuals have experienced vision at some point in their lives and are most aware of their sensory loss, and 2)
their visual brain is believed to have developed typically, maintaining the necessary connectivity for these approaches to
be effective (Heitmann et al., 2023). In addition to solving scientific, engineering and clinical challenges, it is crucial to
not only create technically effective devices but to also align neural implant developers’ perspectives with the needs
and expectations of implantees (Nadolskis et al., 2024, van Stuijvenberg et al., 2024). There is, however, a lack of
methodologies to predict, optimize and evaluate the impact of electrode design and placement in visual field coverage
in large patient populations efficiently.

Our comprehensive and scalable method to simulate andoptimize the placement of electrodes for a visual prosthesis
incorporates 1) the individual anatomy that predicts functional visual maps, 2) flexibility in electrode design, and 3) a
preset phosphene map one aims to obtain with the prosthesis. Our pipeline is open-source and automatically finds the
electrode configuration that optimally matches a preset ‘ideal’ phosphene map within these constraints. Because the
pipeline uses the individual brain anatomy as a starting point, it can also be used in blind subjects after obtaining an
anatomical MRI scan. The optimal location and insertion angles of configurable electrode array models are determined
with a Bayesian optimization procedure. This algorithm efficiently minimizes a cost function that considers the electrode
yield in grey matter, the visual field coverage of the predicted phosphene map, and the similarity in density distribution
between the preset target phosphene map and the predicted phosphene map based on the current implantation parameters.
We explore the feasibility of an ideal full-field phosphene coverage, and further demonstrate our pipeline by targeting
specific subareas of the visual field within a set of practical surgical constraints. In our examples, model parameters and
implant location were jointly optimized for a 3D electrode array containing a thousand contact points equally distributed
over a 10x10x10 grid of contact points aimed to be implanted in V1. The general procedure, however, allows for any
electrode design and can easily be applied to other or multiple brain areas. We validate our method on 362 human
hemispheres using anatomical and retinotopy data from the Human Connectome Project 7T retinotopy dataset (Benson
et al., 2018).
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2 METHODS

2.1 Preprocessing of the Human Connectome Project 7T retinotopy dataset

Data was obtained from the Human Connectome Project 7T retinotopy dataset (Benson et al., 2018). T1-weighted
(T1w) and T2-weighted (T2w) structural scans at 0.7-mm isotropic resolution were processed using the FreeSurfer
image analysis suite (version 7.2; http://surfer.nmr.harvard.edu). Subject brains were inflated and aligned to FreeSurfer’s
anatomical fsaverage atlas.

The inferences made in this work are based on the retinotopic data described by Benson & Winawer (2018). In brief,
MRI data was acquired using a Siemens 7T Magnetom actively shielded scanner and a 32-channel receiver coil array
with a single channel transmit coil (Nova Medical, Wilmington, MA) at a 1.6mm isotropic resolution and 1s TR
(multiband acceleration 5, in-plane acceleration 2, 85 slices). The population receptive field (pRF) maps describe the
location and the size of the receptive field for each 1mm isotropic voxel (see Benson et al. (2018) for descriptions of
pRF models used). pRF surface maps based on empirical data in Freesurfer fsaverage space were warped to individual
space using Freesurfer’s mri_surf2surf function. Bayesian inference of the retinotopic maps was performed using
Neuropythy’s register_retinotopy command (https://github.com/noahbenson/neuropythy). This procedure harmonizes
the anatomical inference of the pRFs, the Benson 2014 atlas (Benson et al., 2014) and experimental data (Benson &
Winawer, 2018) comprised of retinotopic responses to visual stimuli up to 8 degrees eccentricity. Note that the Benson
2014 atlas predicts maps up to 90 degrees eccentricity, however only the inner 20 degrees of eccentricity in V1, V2, and
V3 have been empirically validated.

2.2 Pipeline for optimization of electrode grid placement

Our strategy to optimize electrode placement is to minimize the difference between a ‘target’ phosphene distribution
(TP) and a ‘predicted’ phosphene map (PP) that we infer from virtual placement of electrodes into a brain model
with probabilistic or measured retinotopic maps. This difference was quantified and minimized by calculating the
loss with a Bayesian search algorithm (scikit; Pedregosa et al., 2011). An example of the electrode design (and its
simplification) used for the simulations is displayed in figure 1A. The main input variables of the optimization function
were the angles alpha (pitch) and beta (yaw), which define the insertion trajectory of the virtually placed implant. This
insertion trajectory was determined by finding the intersection between the insertion point on the cortical sheet and the
centroid of the calcarine sulcus (CS) at the angles alpha and beta (Figure 1A-B). The centroid, or geometric center, was
calculated using the medians along the three dimensions of the CS volume. Importantly, the CS has been reported to be
a reliable estimate of the location and total volume of the human primary visual cortex (Gilissen & Zilles, 1996). To
test whether this is also the case in the HCP dataset, the CS volume was determined by Freesurfer’s cortical parcellation
algorithm (Desikan-Killiany Atlas) and compared to the volume of V1 (all voxels in the cortical ribbon of the V1-parcel
determined by the pRF model), see supplementary figure S1. The range of insertion angles were restricted so that the
insertion trajectory cannot intersect with the other hemisphere, and it excludes unrealistic surgical approaches (e.g.
insertion in an anterior - posterior direction).

For many combinations of angles, a portion of the electrode grid would end up outside of the cortex. In case any
electrode was out of bounds, the configuration was flagged as invalid, and a penalty was assigned in the optimization
procedure. An extra parameter (shank offset) was added to the optimization function to enable the distance between
the insertion point on the cortical surface and the first contact point on the electrode shank to vary (Figure 1A). To
further vary cortical depth, the final parameter shank length was included in the search for optimal electrode coverage,
density and yield (Figure 1A). Note that the longer the shanks, the higher the space between contact points, affecting
the density of contact points and thus the space between the phosphenes in visual space. We constrained the cortical
depth of electrodes to 8 cm, representing approximately half the brain’s average length (17 cm) and enabling access to
deeper structures, such as regions corresponding to higher eccentricities, from a broad range of insertion angles (Yang
et al., 2020). See Table 1 for an overview of the parameters and the respective ranges. Furthermore, the search can
be used to optimally place electrodes in a specific region of interest (ROI). Neurons in V1 have a smaller receptive
field size compared to higher visual areas (Benson et al., 2021), potentially allowing denser phosphene maps. During
Bayesian search, some parameter combinations may position electrodes outside the brain. To ensure valid placements
within the cortical volume, we penalized configurations with contact points outside V1. Instead of excluding these cases
outright, the penalty magnitude controls the extent to which the algorithm can explore boundary regions, potentially
leading to better solutions near anatomical limits. For each set of parameters, or cycle of the optimization pipeline
(Figure 2), the electrode-grid is virtually positioned to match the trajectory set by the insertion angles. The predicted
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phosphene map is then extracted from the intersection of the electrode coordinates and the voxels of the retinotopic map.
Each individual electrode that is located in a retinotopically defined map yields a phosphene on a 500-by-1000-pixel
image-grid, ranging up to 90 degrees visual angle. Note that the resolution of the image-grid onto which we project the
phosphenes impacts the simulation speed. However, if the resolution is too low, the accuracy of the loss function is
compromised. To simplify the simulation, we fix the spread of stimulation current to the voxel size of the retinotopic
map (1mm3). Phosphenes are modeled as 2-D Gaussian spots of light with standard deviation ranging from 0.2 up to 3
visual degrees, depending on the cortical magnification factor and a simulated stimulation amplitude of 100 micro-amps
(Tehovnik et al., 2005; Wang et al., 2008). Finally, the process is repeated for a new set of parameters up to 100 times
(separately for each hemisphere). The entire procedure is illustrated by the images in figure 1 and the flowchart diagram
in figure 2.

Figure 1. Overview of electrode optimization pipeline. The Bayesian search algorithm determines the next set of parameters based on a loss function with several

components (see Methods), and the process is repeated until the optimal set of parameters is found for a specific target phosphene configuration. A) illustration of

electrode placement (top) and electrode-grid configuration parameters (bottom). B) The red grid only serves as a reference and is centered on the center of the left

calcarine sulcus (black triangles). The implant position (yellow grid) is calculated based on alpha (pitch) and beta (yaw) relative to the reference grid. For a new set of

parameters, the resulting configuration can be either valid (left) or invalid (center) when contact points are located outside of the brain. In the ‘valid’ example, the contact

point closest to the base is located 10mm from the point where the shank penetrates the cortex. The base is located on the surface of the brain and serves as the anchor

point for the shanks. C) Each contact point potentially evokes a phosphene in the polar angle plot. The individual phosphenes are modeled as 2-D Gaussians on a

500-by-1000-pixel phosphene map. Color codes for eccentricity. D) One of the loss terms is the Hellinger distance between the probability distributions of the simulated

phosphene map (left) and the target phosphene map (right).
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2.3 Bayesian optimization
Bayesian optimization has become an attractive method to
optimize expensive to evaluate black box functions which
are derivative-free and possibly noisy (Shahriari et al.,
2016). Bayesian methods have been proven useful in several
neurotechnology applications such as neurostimulation
interventions (Choinière et al., 2024, Losanno et al., 2021,
Bonizzato et al., 2023) and human-in-the-loop optimization
of visual encoding in retinal prosthesis (Granley et al.,
2023). The algorithm iteratively evaluates a probabilistic
model for which a cheap probability function f based on
the posterior distribution is optimized before sampling
the next point. The function objective is considered as a
random function (a stochastic process) on which a prior is
placed. Here, the prior is defined by a Gaussian process
capturing our beliefs about the function behavior. Function
evaluations are treated as data and used to update the
prior to form the posterior distribution over the objective
function. The convergence of the optimization algorithm
was accelerated by setting an initial sampling point for
which it was known that the resulting grid would hit some
portion of V1. We chose to position the center of the
electrode grid at the centroid of the calcarine sulcus with
initial parameters 0° alpha, 0° beta, 20mm shank length
and 25mm shank offset. The model can also be run without
such prior knowledge of the objective function, but it will
likely take more iterations to converge.

Table 1: Parameters optimized by the Bayesian optimizer.
Beta values correspond to the left hemisphere. For
the right hemisphere, the range is [−110◦, 15◦].

Parameter Range Unit
Alpha [−90◦, 90◦] degrees
Beta [−15◦, 110◦] degrees
Offset from base [0, 40] mm
Shank length [10, 40] mm

2.4 Loss function
The loss function comprised three linearly weighted terms
that together indicate the difference between a desired
phosphene map and the phosphene map predicted from
sampling the pRF parameters at the location of the 1000
simulated electrodes in the brain. Below, we explain each
loss term and its meaning in the context of the optimization
goals. We chose to emphasize the contribution of visual
field coverage and phosphene distribution relative to the
absolute number of electrodes in V1. However, weights a, b
and c can be tweaked depending on the desired outcome. A
fourth loss term is added to demonstrate an additional safety
constraint in case intravascular data is available (see section
2.4.4: Vessel avoidance.

Loss = aDC + bY + cH + dV (1)

Figure 2. Bayesian Optimization Pipeline for Virtual Electrode
Placement.

The optimization process begins with parameter initialization,

followed by building an electrode grid, generating a phosphene map

(PM) based on the insertion trajectory’s endpoint, and comparing it

with the target PM. If the grid extends beyond the target area (V1), a

penalty is applied. The process then iterates using a Gaussian

process surrogate model, where the next iteration point, xt+1, is

selected by maximizing the acquisition function f(x). This

iterative process continues until convergence. Rectangles denote

processes, while diamonds represent decision points.
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2.4.1 Sørensen–Dice coefficient

The dice coefficient (DC) is a measure of overlap between two datasets. DC was computed on the binarized target
phosphene map (TP) and a binarized version of the predicted phosphene map (PP). Each pixel was set to 1 if they
contain phosphene activation and 0 if they do not. |TP| and |PP| represent the number of elements in each set. The
Sørensen index equals twice the number of elements common to both sets divided by the sum of the number of elements
in each set. Dice is included to obtain phosphene maps that are localized in the desired visual region.

DC =
2|TP ∩ PP |
|TP |+ |PP |

(2)

The DC term measures the extent of visual field coverage, regardless of the intensity or distribution of the phosphenes.
Binarization simplifies the metric to focus solely on whether specific regions of the visual field are activated, thereby
facilitating the evaluation of coverage completeness. Additionally, it enhances robustness to noise and intensity
variations, preventing minor differences from disproportionately influencing the results. This approach aligns with the
practical goals of prosthesis design by ensuring critical regions of the visual field are covered to support essential tasks,
such as navigation and object recognition, in cases where coverage is more important than phosphene-level intensity
differences.

2.4.2 Yield

Yield indicates the proportion of electrodes that can evoke a phosphene. We aim this to be as high as possible, thus
allowing the implant to achieve high spatial resolution. Contact points outside of the targeted region are penalized by
adding a constant to this loss term.

Y =
nhits

ncontactpoints
(3)

2.4.3 Hellinger distance

The Hellinger distance (H) quantifies similarity between two probability distributions and is defined as the square root
of the expected squared difference between the square roots of the probability distributions.

H(P,Q) =

√∑(√
P −

√
Q
)2

(4)

Hellinger distance is especially suitable for comparing normalized discrete probability distributions in machine learning
as it is restricted to the range between 0 and 1. P refers to the probability distribution of the target phosphenes, and
Q to the distribution of predicted phosphenes. The maximum distance 1 is achieved when P assigns probability 0 to
every set to which Q assigns a positive probability, and vice versa. H will reward parameter sets for which the virtually
implanted electrodes yield a phosphene map with the desired density distributions and penalize density distributions
that diverge from the target map.

While the Sørensen–Dice coefficient assesses coverage, the Hellinger distance metric complements it by simultaneously
considering the distribution and intensity of phosphenes across the visual field. This division of roles ensures that each
term addresses a distinct aspect of the optimization, with the binarized dice coefficient measuring "where" activation
occurs and the Hellinger distance evaluating "how" it is distributed. Together, dice coefficient, yield and Hellinger
distance provide a balanced approach to optimizing both the quantity (coverage) and quality (distribution) of phosphene
placement.

2.4.4 Vessel avoidance

The Vessel avoidance (V) term can be incorporated into the loss function when intravascular data is available. This
term penalizes electrodes positioned near blood vessels by utilizing two components: confidence-weighted distance and
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a hard constraint defined by a minimum vascular distance threshold. V combines exponentially decaying penalties
based on the proximity of each electrode to nearby vessels and a strict penalty for electrodes within the safety threshold,
measured in millimeters. The term is expressed as follows:

V =
1

N

N∑
i=1

 k∑
j=1

(
e−

dij
λ · α+ cj · β

)+ s · I (5)

where:

• V : Vessel avoidance term.

• N : Total number of electrodes.

• k: Number of nearby vessel voxels considered (neighbors).

• dij : Euclidean distance from electrode i to vessel voxel j.

• λ: Decay constant controlling how strongly closer vessels are penalized.

• cj : Confidence of vessel presence at voxel j (ranging from 0 to 1).

• α: Weighting factor for the distance decay term (decay_factor).

• β: Weighting factor for the confidence term (confidence_factor).

• s: Minimum vascular safety threshold (in mm).

• I: Number of infractions (count of vessel voxels within the safety threshold).

By default, this term is not included in our automatic optimizations due to the absence of intravascular data in the HCP
dataset. However, its functionality is demonstrated in Section 3.4, where it is applied in the fsaverage brain using a
mid-to-large brain vessel atlas (Viviani, 2016).

2.5 Phosphene maps

There is a (hardware-based) limit to the extent of visual field coverage within the parameters of the single electrode array
we use here (evident from Figure 3 and 4). The exclusive consideration of 'full coverage' does not provide sufficient
insight into the procedure's accuracy in targeting specific subregions of the visual field. In addition, different cognitive
functions may differentially rely on different subregions of the visual field and individual patients may choose a visual
field coverage that matches their preferences. Therefore, we demonstrated the spatial specificity of our pipeline by
targeting four distinct target coverages where the density of the map increases progressively moving from the periphery
towards the center (see Figures 1D, 5 and 6 for visual references):

1. full target: covers 0-90° eccentricity.

2. inner target: covers 0-45° eccentricity.

3. upper target: covers 0-90° eccentricity and 0-45° polar angle.

4. lower target: covers 0-90° eccentricity and 135-180 ° polar angle

Simulated phosphenes were inspired by recently published phosphene simulation work (Van Der Grinten, de Ruyter van
Steveninck, Lozano et al., 2024) which integrates electrophysiological, modeling and psychophysics knowledge across
non-human primates and clinical work. Our simulated phosphenes were scaled by eccentricity using flattened cortical
maps to determine the Cortical Magnification Factor (CMF), as described by Schwartz (1983), and the multi-area
visuotopic map complexes in the macaque striate and extrastriate cortex identified by Polimeni et al. (2006). Default
mapping parameters were taken from Horton and Hoyt's revision of the classic Holmes map (1991), but patient-specific
maps or approximations of Benson et al.'s findings (Benson et al., 2018) could be used. The cortical magnification
factor (CMF) for each electrode location was computed to determine the degrees of visual angle covered per mm of
tissue surrounding each electrode. Using a simulated stimulation amplitude of 100 micro-amps, the amount of tissue
activated was estimated based on the function and parameters established by Tehovnik and Slocum (2007).
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M(e) = k

(
1

e+ a
− 1

e+ b

)
Where:

• M : Cortical Magnification Factor (CMF).

• e: Eccentricity in degrees.

• a, b: Parameters for the visuotopic map (a = 0.75, b = 120).

• k = 17.3: Scaling factor.

CMF was then multiplied by the activated area to obtain the phosphene size in degrees of visual angle (S).

S = M(e) ·Rc

We then drew a Gaussian distribution onto a phosphene center so that 95% of the Gaussian's activation falls within the
phosphene area, with the phosphene diameter equating to 2 standard deviations of the Gaussian.

σ =
S

2

G(x, y) = exp

(
− (x− x0)

2 + (y − y0)
2

2σ2

)
Where:

• G: Resulting Gaussian blob.

• (x0, y0): Center coordinates of the phosphene.

• σ: Standard deviation, representing half the phosphene diameter.

2.6 pRF polar density estimation

Probability density functions (PDFs) of group average phosphene maps were defined by computing a non-parametric
kernel-density estimation (KDE) using SciPy 1.0 (Virtanen et al., 2020). The group average phosphene maps were
created by summing simulated phosphenes of the optimized electrode locations in all subjects. Phosphene maps were
created separately for each region of interest (V1, V2, V3, and an all-encompassing ’grey matter’ ROI). The polar plots
in figure 6 show the average density estimate across subjects for different visual field targets. Density was scaled by the
maximum to allow for a fair comparison between regions of interest.

2.7 Group average electrode configuration

In addition to the individual approach, i.e. determine the best electrode configuration for each person individually, we
also optimized electrode placement based on the average brain. Here, we applied the electrode optimization pipeline to
the fsaverage brain and the group average retinotopy (averaged fMRI timecourse). Phosphene maps were then predicted
for individuals either based on the ‘average’ or ‘individual’ parameter estimates. Results were compared to establish the
potential benefits of an individual optimization approach (see figure 7).

2.8 Statistical analysis

Repeated Measures Individual Analysis of Variance (RMANOVA) and pairwise post-hoc Tukey’s multiple comparison
tests were performed using Python library statsmodels v0.14.0 (Seabold & Perktold, 2010). The reported statistical
results were Bonferroni corrected by dividing the significance levels by two (the number of individual ANOVA analyses)
to correct for multiple comparisons.
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3 RESULTS

Optimal electrode placement in primary visual cortex was determined for both hemispheres of 181 subjects from the
HCP 7T dataset by minimizing the difference between a desired phosphene map and predicted phosphenes from virtual
electrode placements. The feasibility of obtaining maximal visual field coverage is illustrated using data from example
subjects (figure 3 and 4). The average results over all individuals are then described using pRF/phosphene density
distributions (figure 5 and 6) indicating the probability that a phosphene was evoked in a specific spatial location with
the optimized placements parameters. Finally, we compared individualized optimization based on an individual’s own
brain scan with the general optimization solution based on the group (fs)average brain (figure 7).

3.1 Standardized starting point for the Bayesian search space

In our sample of 181 individuals, we found that the volume of the calcarine sulcus (CS) correlated well with the volume
of V1 in both hemispheres (Pearson correlation left hemisphere: r = 0.95, p < 0.001; right hemisphere r = 0.87, p <
0.001; figure S1). We used the centroid of the CS as a standardized anatomy based starting point for optimization (with
alpha and beta insertion angles set to zero).

3.2 Phosphene maps from optimized electrode placements

We optimized electrode placements for a target phosphene density map with a coverage of 90 degrees and with a density
that follows a Gaussian function, corresponding to the entire visual field. Figure 3 provides an example of the best
possible placement for our electrode array design, using the trajectory constraints defined in ‘Pipeline for optimization
of electrode placement’, the brain’s anatomical dimensions, as well as the predicted phosphene density map. The
optimal phosphene map reveals a densely populated area between the first 5 to 20 visual degrees, followed by a coherent
spaced-out distribution at higher eccentricities. High eccentricities are notably absent, due to constraints of the electrode
array and cortical layout.

Figure 3. Phosphene configuration in an example subject. The image on the left shows the electrode locations after implantation, based on parameters α = 13,

β = −15, shank offset = 13 mm, and shank length = 24 mm. The V1 region of interest (ROI) is indicated by the white delineation. The yellow diamond marks the

brain surface where the grid base is positioned. For clarity, the grid base, as well as the shanks/cables connecting the grid base to the electrodes, are not shown. The image

on the right displays the simulated phosphene map corresponding to these electrode locations, with intensity reflecting the number of overlapping phosphenes.
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Figure 4 shows optimized phosphene locations in two subjects for the full visual field and the inner half of the visual
field, along with the best configuration for the fsaverage brain. Repeated measures ANOVA revealed a significant
interaction on loss between target and hemisphere (F(3, 540) = 7.1, p < 0.001). We also found a pronounced difference
between left and right hemispheres for full target (M = -0.05, p < 0.001), lower target (M =-0.10, p < 0.001) and upper
target (M = -0.07, p < 0.001). Loss was lower for the right hemisphere for all targets, except the inner target (see Figure
4C).

Figure 4. Comparison of individually optimized electrode configurations for the full visual field and foveal target. A) The top row shows phosphene locations in

two randomly selected subjects when targeting eccentricities up to 90 degrees (top row) and 45 degrees (bottom row). B) The polar plots (top) display optimization results

for the averaged pRF across all subjects in the fsaverage brain. The red lines indicate the first 20 degrees of eccentricity. C) The bar chart (bottom right) illustrates the loss

in all subjects across both hemispheres for each target. Error bars represent the standard error [* = p < 0.001]. The legend denotes LH = left hemisphere and RH = right

hemisphere.

Optimization variability across the population was further evaluated with group-average pRF density functions of
predicted phosphenes across the visual field. In figure 5 and 6, pRF density plots are shown per target phosphene map
across the regions of interest. We observed a fairly symmetrical phosphene peak distribution across hemispheres, with
most phosphenes located quite central in the visual field. Phosphenes obtained for the upper and lower target maps
were mostly located in the expected visual quadrants, however a relatively large proportion of these phosphenes came
from electrode contacts in V2 and V3. This indicates that even when the algorithm tends to place the grid in V1 for
these target regions, frequently no solution could be found where all 1000 electrodes are placed in V1.
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Figure 5. pRF density polar plots in the fsaverage brain. Results after running the pipeline on subject average population receptive field (pRF) maps projected on the

fsaverage brain. The color indicates the density (as determined by Gaussian kernel density estimation) of simulated phosphenes in visual space. For reference, the target

phosphene map is shown on the background of each plot. For the lower and upper target, even the best solution places a notable amount of electrodes in V2.
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Figure 6. Group average pRF density polar plots. The center plots present a summary of all population receptive field (pRF) locations in either the left or right
hemisphere after optimizing electrode configurations across all subjects. The color represents the density, determined using Gaussian kernel density estimation (KDE), of
simulated phosphenes in visual space. For reference, the target phosphene map is displayed in the background of each plot. Depending on the target visual field region and
individual variations, many electrodes are placed in V2 and V3.
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3.3 Group average optimization versus individual optimization

For a less computationally expensive, and thus faster way to design an electrode grid, it is possible to optimize the
placement of electrodes on the average brain and then virtually implant this configuration in all individuals. In figure 7
this group average approach is compared with the results from the individualized optimization approach. Each element
of the loss function is shown separately for a more detailed description of differences in visual coverage. Post hoc
comparisons using the Tukey HSD test indicated that the individually optimized approach significantly outperformed
the average approach for phosphene yield (M = 0.03, p < 0.001), phosphene map coverage (M = 0.18, p < 0.001), as
well as Hellinger distance (M = 0.08, p < 0.001). See supplementary materials (figure S3) for single-subject examples.

Figure 7. Superior visual coverage for individually fine-tuned electrode placement. The violin plots illustrate the three loss terms, with each half representing results

for the left (blue) or right (yellow) hemisphere. Configurations based on individually optimized parameters (ind) result in significantly more electrodes successfully placed

in V1, greater phosphene coverage, and a more accurate density distribution compared to an average electrode configuration (avg). HD represents the Hellinger Distance.

[* = p<0.001].

3.4 Intravascular-aware optimization

When intravascular data is available e.g. by obtaining a 3D Time-of-Flight Magnetic Resonance Angiography sequence
(Sehgal & Farooq, 2021) for each blind individual, a vascular avoidance term can be added to the optimization (see
Methods 2.4.4 vessel avoidance). This loss term accounts for blood vessels by adding a penalty to each contact
point depending on how close they are to segmented blood vessel voxels, thus pushing the Bayesian optimization
towards safer solutions. In addition, when the array is closer to a blood vessel voxel by lower than a threshold set
by the user e.g. 2mm, 5mm, 10mm, the solution is rendered invalid. To demonstrate the use of this safety term, we
simulated an implantation within the fsaverage brain, incorporating mid-to-large blood vessel reconstructions based on
the atlas by Viviani (2016) aligned to the fsaverage brain. Figure 8 shows how the safety term penalizes risky locations.
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Figure 8. Intravascular-aware optimization. Intravascular data from Viviani (2016) was aligned to the fsaverage brain, with the loss function term calculated for each

individual voxel in V1. The images, arranged from left to right, illustrate increasing beta angles. As the array is shifted closer to the superior sagittal sinus, the vessel

avoidance loss correspondingly increases.
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4 DISCUSSION

Restoring a rudimentary form of vision in blind patients is an ambitious aim for neuroscience and neural engineering
that has recently gained a lot of attention. Visual prostheses that interface directly with the brain may one day be a
realistic treatment option for blindness that results from damage to the early visual pathways Normann et al., 2009;
Fernández et al., 2021; Roelfsema, 2020; Rosenfeld et al., 2020). However, the development of such a treatment comes
with significant challenges. The method of optimizing electrode placement that we present here addresses several of
these, allowing to optimize the design and placement of electrode arrays to obtain a functional implant with coverage
and resolution that matches a pre-defined target, within predetermined boundaries for surgical implantation.

Pioneering research by Chen et al. (2020) demonstrated that high-channel count, dense visual coverage is achievable in
non-human primates using multiple Utah arrays, with up to 9 degrees of coverage in V1 and up to 15 degrees in V4.
Preliminary findings with the Intracortical Visual Prosthesis (ICVP); Dagnelie et al., 2023,Barry et al., 2023), show
the stable use and phosphene mapping of up to 25 wireless floating microelectrode arrays (WFMAs), each with 16
stimulating electrodes (up to 400 electrodes distributed around the available surgical area). While distributing electrodes
over multiple (smaller) electrode arrays shows high potential of improving visual coverage, challenges emerge when
trying to optimize the placement of multiple interdependent arrays. For example, they cannot physically occupy the
same space, and their implantation trajectories need to be compatible, which is especially relevant for deeper electrodes.
In the case of non-wireless implants, extra space for cables (and occasional encapsulation and gliosis) should be taken
into account (Chen, 2023).

Our current approach can be expanded to place multiple electrode arrays in a serial manner, however more elaborate
optimization procedures may be needed. In sighted human volunteers, and using surface electrodes located on the
medial wall of the occipital lobe near the calcarine sulcus Beauchamp et al., (2020) reported relatively high eccentricities
with a mean reported phosphene location of (azimuth 13.3◦, elevation 2.1◦). In the human brain, achieving higher visual
visual field coverage (> 30◦) in V1 will likely involve long penetrating shanks deep into the sulcus, according to pRF
estimations (Benson et al., 2018). Even with hypothetical high-channel count, long-shank arrays such as those used in
our simulations, covering the entire visual field with high spatial resolution remains a significant challenge. To achieve
high visual coverage while minimizing both acute surgical tissue damage and chronic encapsulation, ultra-thin, ultra-
flexible electrode arrays have emerged as a promising alternative to rigid electrodes. These arrays have demonstrated
impressive results in neural recording and chronic tracking of neural activity (Musk, 2019). Notable advancements
include flexible depth electrodes capable of recording from up to 128 channels at depths of up to 10 cm in human brain
tissue (Zhao et al., 2024). Furthermore, ultra-flexible arrays have been shown to generate low-threshold detectable
visual percepts in mice (Lycke et al., 2023; Orlemann et al., 2024) and achieve high-quality neural recordings in the
visual cortex of non-human primates (Merken et al., 2022). These developments highlight the potential of ultra-flexible
electrodes to enhance visual coverage and improve the longevity and safety of cortical visual prostheses. Alternatively
to penetrating flexible electrodes, a fully-wireless, 50 µm-thick flexible µECoG chip with 65,536 recording and 16,384
stimulation channels has been demonstrated to provide stable chronic recordings (including cortical visual responses),
and stimulation capabilities in porcine and non-human primates by Jung, T. (2024).

Our data-driven approach optimizes electrode placement using simulated phosphenes based on individual anatomy,
minimizing the difference between the simulated phosphene patterns and a predefined target layout. In this work, we
chose to demonstrate our optimization pipeline using the center of the Calcarine Sulcus as the insertion target, and
established a series of design parameters (shank lenght and shank offset) and implant positioning parameters (alpha
and beta angles) as a search space. However, implant designers and researchers can easily select their own insertion
targets, design parameters, and perform any geometrical transformation and positioning of their implant, as long as the
implantation method is surgically feasible.

Even though we set the algorithm to optimize electrode placement in V1, a fraction of the contact points ended up
in V2 and V3. The algorithm also has the capacity of optimizing placement based on multiple visual areas, while
it is currently unknown how phosphenes that are evoked in distinct visual areas are perceptually combined into
patterns. Future studies should address this question, as it would greatly expand the possible configurations for
a cortical visual prosthesis. About half of the electrodes in our simulations were located inside grey matter, with
most of the remaining electrodes likely located in white matter. Here, we assumed that white matter stimulation
cannot effectively create useful phosphene percepts. This assumption is partly based on the lack of a clear
prediction for the retinotopic organization of white matter. However, since these fiber paths do connect visual areas
and carry visual information, further research might help to understand the perceptual effects of white matter stimulation.

The predicted phosphene maps were generally closer to the target distribution for the right hemisphere for
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all targets, except the inner target. This difference might be related to anatomical hemispheric differences (see also
supplementary figure S1). Our results also demonstrated that while it is possible to base electrode placement on the
optimization solution in the average brain, an individually optimized approach performed significantly better. This
finding underscores the importance of tailoring electrode placement and design to the specific anatomical characteristics
of each individual (Beyeler et. al, 2019, Bruce and Beyeler, 2022). By considering individual variations, we can achieve
better outcomes and optimize visual restoration for each patient.

The loss terms implemented in our approach were chosen for interpretability and ease of use. However, they can easily
be customized, replaced, or expanded to match the needs of the designers and users. With the example electrode array
used here, array placement results were more successful for the foveal (inner) target region, compared to the more
peripheral (full, upper and lower) target regions. This is a direct consequence of the higher eccentricities being located
deeper along the calcarine and requiring longer shanks to reach them, which automatically increases the electrode
spacing along the shank. In addition, a relatively large part of cortex is dedicated to central vision (low eccentricities)
compared to peripheral vision (known as cortical magnification). A more suitable approach to get coverage from the
peripheral visual field is to target different sections of the visual field with multiple electrode arrays and/or in different
visual areas. Retinotopic maps are ubiquitous along the visual cortical hierarchy (Wandell et al., 2007), but receptive
field sizes increase towards higher areas, reducing the spatial resolution of potential phosphene vision. Importantly, and
to reiterate a previous point, it is currently unknown how simultaneous stimulation across hierarchically different visual
areas perceptually combines.

The accuracy of the phosphene map predictions in our pipeline crucially depends on 1) the precision and the spatial
resolution of the underlying population receptive field maps/atlas. There is an accumulative uncertainty that stems from
alignment and extrapolating data from seeing individuals to blind individuals. 2) the assumptions of the phosphene
simulation algorithm. A possible improvement to the first matter could be to acquire higher quality pRF data. The
availability of higher field strengths could potentially yield scans with higher resolution. It is highly recommended
to obtain detailed individual anatomy using a high-resolution MRI scan whenever possible. Retinotopy can then be
estimated based on individual anatomy and group-average (probabilistic) pRF maps. Additionally, simulations can
be improved by incorporating blood vessel mapping through techniques such as 3D Time-of-Flight MR Angiography
(Sehgal & Farooq, 2021) and applying the vessel avoidance term demonstrated here to optimize electrode placement.

Recent work in phosphene simulation have pushed forward the biological plausibility and accuracy of these "virtual
patients" (van der Grinten, de Ruyter van Steveninck, Lozano, et al. (2024), Fine, I., Boynton, G.M. (2024)). By
incorporating decades of research and clinical knowledge on the electrophysiology and psychophysics of phosphene
perception, essential elements of phosphene percepts such as the relationship between electrode location, stimulation
parameters, temporal history of stimulation and phosphene size, brightness and temporal dynamics can be better
predicted. However, there is a long road ahead until the mechanisms of phosphene vision are fully elucidated, and
complex shapes, non-linear multi-electrode interactions, temporal interference, feature-specific percetps, multi-area
percepts integration as well as inter-individual variability and the effect of neuroplasticity, to name a few, remains a
challenge. Future work addressing these and other issues will allow for better planning which will have in account
not only the phosphene locations in V1 but more complex perceptual properties that can be elicited with multi-
area stimulation, as well as optimize for elements such as cortical inter-electrode distances to account for nonlinear
microstimulation interactions.

Moreover, the "optimal phosphene map" achievable with an implant may be different depending on the task to be
evaluated, as well as the user’s needs and expectations. In order to learn about task-oriented optimal phosphene maps,
future virtual implant optimizations could benefit from end-to-end computer vision and simulation pipelines, where the
effectiveness of phosphene map configurations in daily life activities can be pre-evaluated using deep neural networks
(van der Grinten, de Ruyter van Steveninck, Lozano, et al. (2024), Beyeler, (2022), Küçükoğlu et al. (2022). Moreover,
VR settings incorporating the effects of gaze-contingent phosphene simulations (de Ruyter van Steveninck, 2024) can
allow for psychophysics and task-driven performance evaluations with sighted subjects. VR phosphene testing allows
to evaluate and compare the performance of different electrode locations beyond quantitative metrics such as coverage,
and extend its relevance to realistic and diverse scenarios (Beyeler & Sanchez-Garcia, (2022), de Ruyter van Steveninck
et al., (2023)) and user needs (Nadolskis et al., 2024, van Stuijvenberg et al., 2024).

Finally, to ensure the robustness and clinical relevance of these simulations, validation should be conducted on a
cohort of blind individuals. By acquiring detailed anatomical information, including vasculature, we can generate
personalized retinotopic maps directly from anatomical features. This step is crucial because anatomical variability
across individuals may significantly affect electrode placement and visual outcomes. Validation in real individuals
allows for more accurate predictions of functional performance.
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5 CONCLUSION

In conclusion, we present an automated approach to optimize the virtual electrode placement in human visual cortex for
visual neuroprostheses. It efficiently finds a suitable location yielding the closest possible match to a preset visual field
coverage. We demonstrate its potential for large-scale use on a dataset comprising of anatomical and pRF data for 181
individual brains (362 hemispheres). Our open-source software (https://github.com/rickvanhoof/vimplant) can easily be
expanded to facilitate different electrode configurations (including multiple arrays), different (multiple) target areas,
or constraints (through different cost functions). As such, it will be able to refine surgical procedures as well as drive
simulation studies in healthy observers with phosphene vision configurations that are realistic representations of the
possibilities with any given electrode design.
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